List of Publications

B. N. Basu, “Technical Writing,” Prentice-Hall of India, New Delhi (2007)

B. N. Basu, “Electromagnetic Theory and Applications in Beam-Wave Electronics,” World Scientific Publishing Co. Inc., Singapore, New Jersey, London, Hong Kong (1996)

B. N. Basu, “Engineering Electromagnetics Essentials,” Universities Press, Hyderabad (2015)

Vishal Kesari and B. N. Basu, High Power Microwave Tubes: Basics and Trends, Volume 1, Morgan and Claypool Publishers, San Rafael (California)/Bristol: IOP Publishing (2018)

Vishal Kesari and B. N. Basu, High Power Microwave Tubes: Basics and Trends,Volume 2, Morgan and Claypool Publishers, San Rafael (California)/Bristol: IOP Publishing (2018)

  • Books
    (1) B. N. Basu, “Technical Writing,” Prentice-Hall of India, New Delhi (2007)
    (2) B. N. Basu, “Electromagnetic Theory and Applications in Beam-Wave Electronics,” World Scientific Publishing Co. Inc., Singapore, New Jersey, London, Hong Kong (1996)
    (3) B. N. Basu, “Engineering Electromagnetics Essentials,” Universities Press, Hyderabad (2015)
    (4) Vishal Kesari and B. N. Basu, High Power Microwave Tubes: Basics and Trends, Volume 1, Morgan and Claypool Publishers, San Rafael (California)/Bristol: IOP Publishing (2018)
    (5) Vishal Kesari and B. N. Basu, High Power Microwave Tubes: Basics and Trends,Volume 2, Morgan and Claypool Publishers, San Rafael (California)/Bristol: IOP Publishing (2018)
  • Monographs
    (1) G. Singh and B. N. Basu, “Modal analysis of azimuthally periodic vane-loaded cylindrical waveguide interaction structure for gyro-TWT,” Progress in Electromagnetics Research, PIER, vol. 70, pp. 175-189 (2007).
    (2) K. Singh, P. K. Jain, and B. N. Basu, “Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects,” Progress in Electromagnetics Research, PIER, vol. 47, pp. 297-312 (2004).
    (3) P. K. Jain and B. N. Basu, “Electromagnetic wave propagation through helical structures,” in the monograph: Electromagnetic fields in Unconventional Materials (John Wiley & Sons, USA: Editors: O. N. Singh and A. Lakhtakia) (2000).
    (4) S. Ghosh, A. K. Sinha, R. K. Gupta, S. N. Joshi, P. K. Jain, and B. N. Basu, “Space-harmonic effects in helical slow-wave structures¾an equivalent circuit analysis,” Progress in Electromagnetics Research, PIER, vol. 30, pp. 85-104 (2000).
    (5) S. Ghosh, P. K. Jain, and B. N. Basu, “Fast-wave analysis of an inhomogeneously-loaded helix enclosed in a cylindrical waveguide,” Progress in Electromagnetics Research, PIER, vol. 18, pp. 19-43 (1998).
    (6) S. Ghosh, P. K. Jain, and B. N. Basu, “Analytical exploration of new tapered-geometry dielectric-supported helix slow-wave structures for broadband TWTs,” Progress in Electromagnetics Research, PIER, vol. 15, pp. 63-85 (1997).

Journal papers

  1. Xin Wang, Shifeng Li, Xuanming Zhang, Shengkun Jiang, Zhanliang Wang, Huarong Gong, Yubin, Gong, B. N. Basu, and Zhaoyun Duan, “Novel S-band metamaterial extended interaction klystron,” IEEE Electron Device Letters, vol. 41, no. 10, October 2020, page form 1580-1583 (2020).
  2. Shifeng Li, Zhaoyun Duan, Hua Huang, B. N. Basu, Fei Wang, Zhenbang Liu, Hu He, Xin Wang, Zhanliang Wang, and Yubin Gong, “Input and Output Couplers for an Oversized Coaxial Relativistic Klystron Amplifier at Ka Band,” IEEE Trans. Electron Devices, vol. 66, (no. 6, June) pp. 2758-2763 (2019). (DOI: 10.1109/TED.2019.2911041).
  3. Xin Wang, Z. Duan, Xirui Zhan, Fei Wang, Shifeng Li, Shengkun Jiang, Zhanliang Wang, Yubin Gong, , and B. N. Basu, “Characterization of metamaterial slow-wave structure loaded with complementary electric split-ring resonators,” IEEE Trans. Microwave Theory and Technique, vol. 67, pp. 2238-2246 (2019). (DOI: 10.1109/TMTT.2019.2908360).
  4. Z. Duan, M. A. Shapiro, Edl Schamiloglu, N. Behdad, Y. Gong, J. H. Booske, B. N. Basu, and R. J. Temkin, “Metamaterial-inspired vacuum electron devices and accelerators,” IEEE Trans. Electron Devices, vol. 66, pp. 207-218 (2019). (DOI:10.1109/TMTT.2019.2908360).
  5. Raktim Guha, A. K. Bandyopadhyay, A. K. Varshney, S. K. Datta, and B. N. Basu, “Investigations into helix slow-wave structure assisted by double-negative metamaterial,” IEEE Trans. Electron Devices, vol. 65, pp. 5082-5088 (2018).
  6. Vishal Kesari and B. N. Basu, “Analysis of some periodic structures of microwave tubes: part II: Analysis of disc-loaded fast-wave structures of gyro-traveling-wave tubes,” Journal of Electromagnetic Waves and Applications, vol. 32, pp. 1-36 (2018).
  7. Vishal Kesari and B. N. Basu, “Analysis of some periodic structures of microwave tubes: part I: analysis of helical slow-wave structures of traveling-wave tubes,” Journal of Electromagnetic Waves and Applications, vol. 31, pp. 1-37 (2017).
  8. A. K. Varshney, R. Guha, S. K. Datta and B. N. Basu, “Dispersion control of helical slow-wave structure by double-negative metamaterial loading,” Journal of Electromagnetic Waves and Applications, vol. 30, pp. 566-578 (2016).
  9. A. K. Varshney, R. Guha, S. K. Ghosh, and B. N. Basu, “Gain-frequency response of a helix traveling-wave tube with T-shaped dielectric support rods in a metal envelope,” Journal of Electromagnetic Waves and Applications, vol. 30, pp. 1308-1320 (2016).
  10. V. Kesari and B. N. Basu, “Analysis of beam and magnetic field parameter sensitivity of a disc-loaded wideband gyro-TWT,” IEEE Trans. Plasma Science, vol. 41, pp. 1557-1561 (2013).
  11. S. K. Datta, L. Kumar, and B. N. Basu, “Pierce-type one-dimensional Eulerian hydrodynamic analysis of a plasma-filled helix TWT,” IEEE Trans. Plasma Science, vol. 58, pp. 882-890 (2011).
  12. S. K. Datta, V. Bhanu Naidu, P. R. RamanaRao, L. Kumar, and B. N. Basu, “Simple formulas for stopbabd attenuation characteristics of symmetric helical slow-wave structure of travelling-wave tubes,” IEEE Trans. Electron Devices, June, vol. 57, pp. 1447-1454 (2010).
  13. S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures,” Int. J. Infrared and Millimeter Waves, vol. 30, pp. 381-392 (2009).
  14. S. K. Datta, L. Kumar, and B. N. Basu. Analysis of dielectric loss in a helix slow-wave structure, Defence Science Journal, 59, 5, Sept., 549-552 (2009).
  15. S. K. Datta, L. Kumar, and B. N. Basu. Equivalent circuit analysis of a ring-bar slow-wave structure for high-power traveling-wave tubes, IEEE Trans. Electron Devices, vol. 56, pp. 3184-3190 (2009).
  16. S. K. Datta, L. Kumar, and B. N. Basu, “A simple equivalent circuit analysis of the dielectric loss in helical slow-wave structure of a traveling-wave tube,” IEEE Trans. Electron Devices, vol. 56, pp. 1336-1343 (2009).
  17. V. B. Naidu, S. K. Datta, P. R. RamanaRao, A. K. Agrawal, S. U. M. Reddy, L. Kumar, and B. N. Basu, “Three-dimensional electromagnetic analysis of attenuator-coated helix-support rods of a traveling-wave tube,” IEEE Trans. Electron Devices, vol. 56, pp. 945-950 (2009).
  18. S. K. Datta, V. B. Naidu, SUM Reddy, L. Kumar, and B. N. Basu, “Analytical exploration of ultra-wideband helix slow-wave structures using multi-dispersion phase velocity taper,” IEEE Trans. Plasma Science,vol. 37, pp. 311-316 (2009).
  19. S. K. Datta, L. Kumar, and B. N. Basu, “A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structure,” Int. J. Infrared and Millimeter Waves, vol. 30, pp. 381-392 (2009).
  20. S. K. Datta, L. Kumar, and B. N. Basu, “Analysis of dielectric loss in a helix slow-wave structure,” Defence Science Journal, vol.59, no.5, pp.549-552, September 2009.
  21. S. K. Datta, L. Kumar, and B. N. Basu, “A simple closed-form formula for backward-wave start-oscillation condition for millimeter-wave helix TWTs,” Int. J. Infrared and Millimeter Waves, vol. 29, pp. 608-616 (2008).
  22. S. K. Datta, L. Kumar, and B. N. Basu, “Analysis of p-mode stop-band in an asymmetric millimetre-wave helical slow-wave structure,” Int. J. Infrared and Millimeter Waves, vol. 29, pp. 1048-1059 (2008).
  23. V. Kesari, P. K. Jain, and B. N. Basu, “Modal analysis of a corrugated circular waveguide for wideband gyro-travelling-wave tubes,” Int. J. Microwave and Opt. Tech. vol. pp. 147-152 (2007).
  24. V. Kesari, P. K. Jain, and B. N. Basu, Parameters to define the electron beam trajectory of a double-tapered disc-loaded wideband gyro-TWT in profiled magnetic fields,” Int. J. Infrared and Millimeter Waves 28, 443-449 (2007).
  25. V. Kesari, P. K. Jain, and B. N. Basu, “Analysis of a tapered disc-loaded waveguide for a wideband Gyro-TWT,” IEEE Trans. Plasma Science, Special issue–High-Power Microwave Generation, vol. 34, pp. 541-546 (2006).
  26. Z. Duan, Y. Gong, W. Wang, B. N. Basu and Y. Wei, “Accurate tape analysis of the attenuator-coated helical slow-wave structure,” IEEE Trans. Electron Devices, vol. 53, pp. 903-909 (2006).
  27. V. Kesari, P. K. Jain, and B. N. Basu. Exploration of a double-tapered disc-loaded circular waveguide for a wideband gyro-traveling-wave tube, IEEE Electron Device Letters 27, 194-197 (2006).
  28. V. Kesari, P. K. Jain, and B. N. Basu, “Modeling of axially periodic circular waveguide with combined dielectric and metal loading,” Journal of Physics D: Applied Physics, IoP, vol. 38, pp. 3523-3529 (2005).
  29. V. Kesari, P. K. Jain, and B. N. Basu, “Analysis of a disc-loaded circular waveguide for interaction impedance of a gyrotron amplifier,” International Journal of Infrared and Millimeter Waves, vol. 26, pp. 1093-1110 (2005).
  30. V. Kesari, P. K. Jain, and B. N. Basu, “Analysis of a circular waveguide loaded with thick annular metal discs for wide-band gyro-TWTs,” IEEE Transactions on Plasma Science, vol. 33, pp. 1358-1365 (2005).
  31. G. Singh and B. N. Basu, “Improved approach for gain-frequency response of a vane-loaded gyro-TWT,” IEEE Transactions on Plasma Science, vol. 33, pp. 1443-1446 (2005).
  32. K. Singh, P. K. Jain, and B. N. Basu, “Analysis of a corrugated coaxial waveguide resonator for mode rarefaction in a gyrotron,” IEEE Transactions on Plasma Science, vol. 33, pp. 1024-1030 (2005).
  33. G. Singh, P. V. Bhaskar, S. M. S. Ravichandra, P. K. Jain, and B. N. Basu, “Analysis of a vane-loaded gyro-TWT for the gain-frequency response.” IEEE Transactions on Plasma Science, vol. 32, pp. 2130-2138 (2004).
  34. V. Kesari, P. K. Jain, and B. N. Basu, “Approaches to the analysis of a disc loaded cylindrical waveguide for potential application in wide-band gyro-TWTs,” IEEE Transactions on Plasma Science, vol. 32, pp. 2144-2151 (2004).
  35. K. Singh, P. K. Jain, and B. N. Basu, “Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects,” Progress in Electromagnetics Research, PIER, vol. 47, pp. 297-312 (2004).
  36. G. Singh, M. V. Kartikeyan, A. K. Sinha, and B. N. Basu, “Effects of beam and magnetic field parameters on highly competing TE01 and TE21 modes of a vane-loaded gyro-TWT,” Int. J. Infrared and Millimeter Waves, vol. 23, pp. 517-533 (2002).
  37. S. S. Jung, A. V. Soukov, B. Jia, G. S. Park, and B. N. Basu, “Efficiency enhancement and harmonic reduction of wideband helix traveling-wave tubes with positive phase velocity tapering,” Japanese J. Appl. Phys. Part 1, vol. 41 (#6A), pp. 4007-4013, (2002).
  38. A. Pandey, S. Kumar, P. K. Jain, and B. N. Basu. Analysis of a gyro-TWT in a cylindrical waveguide with a dielectric lining on its wall. IETE Technical Review, vol.19, pp. 77-83 (2002).
  39. S. S. Jung, Y. D. Joo, S. Ghosh, B. N. Basu, and G. S. Park, “Synthesis of dielectric helix supports for wideband traveling-wave tubes, Microwave and Optical Technology Letters, vol. 32, pp. 231-235 (2002).
  40. S. S. Jung, C. W. Baik, S. T. Han, S. G. Jeon, H. J. Ha, A. V. Soukhov, B. Jia, G. S. Park, H. S. Kim, H. S. Uhm, and B. N. Basu, “Wideband semi-vane and heavily dielectric loaded helix traveling-wave tubes, IEEE Transactions on Plasma Science, vol. 30, pp. 1009-1016(2002).
  41. S. Ghosh, A. K. Sinha, R. K. Gupta, S. N. Joshi, P. K. Jain, and B. N. Basu, “A heuristic analysis for an inhomogeneously loaded tape helix used in a practical travelling-wave tube,” International J. Electronics, vol. 88, pp. 197-213(2001).
  42. M. Agrawal, G. Singh, P. K. Jain, and B. N. Basu, “Analysis of tapered vane-loaded structures for broadband gyro-TWTs,” IEEE Trans. Plasma Science, vol. 29, pp. 439-444(2001).
  43. S. K. Datta and B. N. Basu, “Control of IM3 distortion in helix TWTs by harmonic injection¾an Eulerian hydrodynamic analysis study,” IEEE Trans. Electron Devices (Special Issue on Vacuum Devices), vol. 48, pp. 62-67 (2001).
  44. Y. Muralidhar, P. K. Jain, and B. N. Basu, “Harnessing of axial beam energy of a coaxial waveguide gyrotron by assistant azimuthal magnetic field,” Insnt. Electron. & Telecomm. Engrs. Tech. Rev., vol. 18, pp. 495-498 (2001).
  45. M. Agrawal, G. Singh, P. K. Jain, and B. N. Basu, “Two-stage vane loading of gyro-TWTs for high gains and bandwidths,” Microwave and Optical Technology Letters, vol. 27, pp. 210-213 (2000).
  46. M. Agrawal, T. R. Sridhar, P. K. Jain, and B. N. Basu, “Waveguide cross section and background magnetic field tapers for broadbanding a gyro-TWT,” International J. Infrared and Millimetre Waves, vol. 21, pp. 1255-1267 (2000).
  47. P. K. Jain and B. N. Basu, “Electromagnetic wave propagation through helical structures,” in the monograph: Electromagnetic fields in Unconventional Materials, (John Wiley & Sons, USA) Editors: O. N. Singh and A. Lakhtakia (2000).
  48. V. V. P. Singh, E. Borie, A. K. Sinha, H. N. Bandopadhya, and B. N. Basu, “Thermo-mechanical analysis of single-disc edge-cooled nitride millimeter-wave window for 200 kW CW gyrotrons,” Int. J. Infrared and Millimeter Waves, vol. 21, pp. 485-504 (2000).
  49. R. K. Sharma, A. K. Sinha, S. M. Sharma, R. K. Gupta, S. N. Joshi, and B. N. Basu. Thermal analysis of electron guns for a miniature helix TWT. IETE Technical Review, vol. 17, pp. 269-274 (2000).
    The preceding paper has also been published under the same title and authorship, but in more details in the monograph: Electromagnetic Waves MonographSeries: Progress in Electromagnetic Research (PIER), (EMW Publishing, Cambridge: Editor: J. A. Kong) vol. 30, pp. 85-104 (2000).
  50. S. Ghosh, A. K. Sinha, R. K. Gupta, S. N. Joshi, P. K. Jain, and B. N. Basu, “Space-harmonic effects in helical slow-wave structures¾an equivalent circuit analysis,” J.Electromagnetic Waves & Applications, vol.14, pp. 1083-1085 (2000).
  51. Y. Muralidhar, P. K. Jain, and B. N. Basu, “Analysis of a large-orbit gyrotron in a coaxial waveguide under assistant background fields.” IEEE Trans. Electron Devices, vol. 47, pp. 634-642(2000).
  52. G. Singh, P. V. Bhaskar, S. M. S. Ravichandra, P. K. Jain, and B. N. Basu, “Control of the gain-frequency response of a vane-loaded gyro-TWT by beam and magnetic field parameters,” Microwave and Optical Technology Letters, vol. 24, pp. 140-145 (2000).
  53. S. K. Datta, P. K. Jain, and B. N. Basu. Harmonic injection effects in backed-off helix travelling-wave tubes¾a study by Eulerian analysis. International J. Electronics, vol.87, pp. 89-97 (2000).
  54. G. Singh, S. M. S. Ravi Chandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, “Analysis of dispersion and interaction impedance characteristics of an azimuthally-periodic vane-loaded cylindrical waveguide for a gyro-TWT,” International J. Electronics, vol. 86, pp. 1463-1479(1999).
  55. S. K. Datta, P. K. Jain, and B. N. Basu. Nonlinear Eulerian versus Lagrangian analysis of helix travelling-wave tubes. J. Indian Vacuum Society 2, pp. 55-61 (1999).
  56. S. K. Datta, S. U. M. Reddy, P. K. Jain, and B. N. Basu, “Nonlinear Eulerian analysis of harmonic generation in travelling-wave tubes,” Int. J. Infrared and Millimeter Waves, vol. 20, pp. 483-490 (1999). 
  57. S. K. Datta, P. K. Jain, and B. N. Basu, “A simple Eulerian analysis of IM3 distortion in helix travelling-wave tubes,” Microwave and Optical Technology Letters, vol. 22, pp. 405-408 (1999).
  58. S. K. Datta, P. K. Jain, and B. N. Basu, “Second-order nonlinear analysis of a traveling-wave tube amplifier,” Insnt. Electron. & Telecomm. Engrs. J. Res. Vol.45, pp. 39-48 (1999).
  59. S. K. Datta, P. K. Jain, M. D. Raj Narayan, and B. N. Basu. Nonlinear Eulerian hydrodynamical analysis of helix traveling-wave tubes for harmonic generation and its control. IEEE Trans. Electron Devices 46, 420-426(1999).
  60. P. V. Bhaskar, S. M. S. Ravi Chandra, G. Singh, P. K. Jain, and B. N. Basu, “Gain-frequency response of a gyro-TWT in a vane-loaded cylindrical waveguide,” Bull. Indian Vacuum Soc. Vol. 2, pp. 47-53 (1999).
  61. S. M. S. Ravi Chandra, P. V. Bhaskar, G. Singh, P. K. Jain, and B. N. Basu, “Analysis of corrugated cylindrical waveguide for a wide-band gyro-TWT,” Bull. Indian Vacuum Soc., vol. 2, pp. 39-46 (1999).
  62. S. K. Datta, P. K. Jain, M. D. R. Narayan, and B. N. Basu, “Nonlinear Eulerian hydrodynamical analysis of helix traveling-wave tubes,” IEEE Trans. Electron Devices, vol.45, pp. 2055-2062 (1998).
  63. S. K. Datta, S. U. M. Reddy, B. N. Basu, and K. U. Limaye, “A novel Lagrangian simulation technique for helix traveling-wave tubes,” Microwave and Optical Technology Letters, vol. 18, pp. 308-310 (1998).
  64. S. K. Datta, P. K. Jain, M. D. Raj Narayan, and B. N. Basu, “Eulerian analysis for harmonic generation and its control in a helix travelling-wave tube,” International J. Electronics, vol.85, pp. 377-395 (1998).
  65. S. Ghosh, P. K. Jain, and B. N. Basu, “Fast-wave analysis of an inhomogeneously-loaded helix enclosed in a cylindrical waveguide, J.Electromagnetic Waves & Applications, vol.12, pp. 191-198 (1998).
    The preceding paper has also appeared under the same title and authorship, but in more details in the monograph: Electromagnetic Waves Monograph Series: Progress in Electromagnetic Research (PIER), (EMW Publishing, Cambridge: Editor: J. A. Kong), PIER, 18, (Chapter 2), 19-43 (1998).
  66. S. K. Datta, P. K. Jain, M. D. Raj Narayan, and B. N. Basu, “Third-order saturation effects in a helix traveling-wave tube under Eulerian approximation,” Microwave and Optical Technology Letters, vol.16, pp. 345-349 (1997).
  67. S. J. Rao, S. Ghosh, P. K. Jain, and B. N. Basu, “Nonresonant Perturbation Measurements on dispersion and interaction impedance characteristics of helical slow-wave structures,” IEEE Trans. Microwave Th. & Tech., vol. 45, pp. 1585-1594 (1997).
  68. P. K. Dalela, P. K. Jain, and B. N Basu, “Non-resonant perturbation measurement on dispersion characteristics of a fast-wave cylindrical waveguide,” Microwave and Optical Technology Letters, vol. 15, pp. 216-219 (1997).
  69. S. J. Rao, P. K. Jain, and B. N. Basu, “Hybrid-mode helix loading effects on gyro-travelling-wave tubes,” International J. Electronics, vol. 82, pp. 663-675 (1997).
  70. S. Ghosh, P. K. Jain, and B. N. Basu, “Rigorous tape analysis of inhomogeneously-loaded helical slow-wave structures,” IEEE Trans. Electron Devices, vol. 44, pp. 1158-1168 (1997).
  71. S. Ghosh, P. K. Jain, and B. N. Basu, “Role of helix thickness in the field analysis and characterization of a slow-wave structure of a broadband TWT,” Insnt. of Electron. & Telecomm. Engrs.Tech. Rev., vol.14, pp. 431-438 (1997).
  72. S. Ghosh, P. K. Jain, and B. N. Basu, “Analysis of an anisotropically-loaded helix in the fast-wave regime for gyro-travelling-wave amplifiers,” Microwave & Optical Technology Letters, vol. 14, pp. 52-56 (1997).
  73. S. J. Rao, P. K. Jain, and B. N.Basu, “Broadbanding of a gyro-TWT by dielectric loading through dispersion shaping,” IEEE Trans. Electron Devices, vol. 43, pp. 2290-2299 (1996).
  74. S. Ghosh, P. K. Jain, and B. N. Basu, “Modified field analysis of inhomogeneously-loaded helical slow-wave structures for TWTs,” International J. Electronics, vol.81, pp. 101-112 (1996).
  75. S. J. Rao, P. K. Jain, and B. N. Basu. Effects of circuit loss and space charge in gyro-travelling-wave tubes. Int. J. Infrared and Millimeter Waves 17, 1507-1517 (1996).
  76. S. J. Rao, P. K. Jain, and B. N. Basu, “Two-stage dielectric-loading for broadbanding a gyro-TWT,” IEEE Electron Dev. Letters, vol. 17, pp. 303-305 (1996).
  77. S. J. Rao, P. K. Jain, and B. N. Basu, “Amplification in gyro-travelling-wave tubes-dispersion relation and gain-bandwidth characteristics,” Instn. Electron. & Telecomm. Engrs. Tech. Rev., vol.13, pp. 141-150 (1996).
  78. The preceding paper has also appeared under the same tiltle and authorship, but in more details in a monograph: Electromagnetic Waves Monograph Series: Progress in Electromagnetic Research (PIER), (EMW Publishing, Cambridge: Editor: J. A. Kong), PIER, 15, (Chapter 3), pp. 63-85 (1997).
  79. S. Ghosh, P. K. Jain, and B. N. Basu, “Analytical exploration of new tapered-geometry dielectric-supported helix slow-wave structures for broadband TWT’s,” J. Electromagnetic Waves & Applications, vol. 10, pp. 1217-1222 (1996).
  80. P. K. Jain and B. N. Basu, “A review on some aspects of a gyro-TWT,” Instn. Electron. & Telecomm. Engrs. Tech. Rev., vol.11, pp. 3-9 (1994).
  81. P. K. Jain, B. N. Basu, and A. K. Sinha, “Analytical approaches to the study of helical slow-wave structure for broadband TWTs,” Instn. Electron. & Telecomm. Engrs. Tech. Rev., vol.10, pp. 369-378 (1993).
  82. S. R. Nagesh, S. Ghosh, P. K. Jain, and B. N. Basu, “A simple model for anisotropic loading of a vane-loaded helix for broad-band travelling-wave tubes,” J. Insnt. Electron. & Telecomm. Engrs., vol.39, pp. 387-390 (1993).
  83. R. K. Gupta, L. Kumar, S. N. Joshi, P. K. Jain, and B. N. Basu, “Simplified tape model of arbitrarily loaded helical slow-wave structure of a traveling-wave tube,” IEE Proceedings-H: Microwave, Antenna & Propagation, vol. 139, pp. 347-350 (1992).
  84. R. S. Raju, S. N. Joshi, P. K. Jain, and B. N. Basu, “Modeling of practical multi-octave band helical slow-wave structures of a traveling-wave tube for interaction impedance,” IEEE Trans. Electron Devices, vol.39, pp. 996-1002 (1992).
  85. A. K. Sinha, R. Verma, R. K. Gupta, L. Kumar, S. N. Joshi, and B. N. Basu, “A new approach to the analysis of a loaded tape helix,” Instn. Electron. & Telecomm. Engrs. Tech. Rev., vol. 9, pp. 35-40 (1992).
  86. P. K. Jain and B. N. Basu, “The inhomogeneous dielectric loading effects of practical helix supports on the interaction impedance of the slow-wave structure of a TWT,” IEEE Trans. Electron Devices, vol.39, pp. 727-733 (1992).
  87. P. C. V. Rao, P. K. Jain, and B. N. Basu, “Evaluation of Pierce’s small-signal parameters of helix traveling-wave tubes for gain calculation,” J. Phys. D: Appl. Phys., vol. 25, pp. 542-547 (1992).
  88. S. Kapoor, R. S. Raju, R. K.Gupta, S. N. Joshi, and B. N. Basu, “Analysis of an inhomogeneously-loaded helical slow-wave structure for broadband TWT’s,” IEEE Trans. Electron Devices, vol.36, pp. 2000-2004 (1989).
  89. L. Kumar, R. S. Raju, S. N. Joshi, and B. N. Basu, “Modeling of a vane-loaded helical slow-wave structure for broadband traveling-wave tubes,” IEEE Trans. Electron Devices, vol.36, pp. 1991-1999 (1989).
  90. P. K. Jain and B. N. Basu, “A theory of the attenuator-coated helical slow-wave structure of a traveling-wave tube,” IEEE Trans. Electron Devices, vol.35, pp. 1750-1757 (1988).
  91. U. Tiwari and B. N. Basu, “Non-iterative synthesis of convergent Pierce electron guns,” IEEE Trans. Electron Devices, vol.35, pp. 1184-1187 (1988).
  92. V. P. Singh, K. V. R. Murthy, and B. N. Basu, “Interaction impedance from equivalent circuit parameters of a dielectric-loaded helical slow-wave structure of a traveling-wave tube,” IEEE Trans. Electron Devices, vol.35, pp. 563-566 (1988).
  93. P. K. Jain and B. N. Basu, “The effect of conductivity losses on propagation through the helical slow-wave structure of a traveling-wave tube,” IEEE Trans. Electron Devices, vol.35, pp. 549-558 (1988).
  94. P. K. Jain and B. N. Basu, “The inhomogeneous loading effect of practical of practical dielectric supports for the helix slow-wave structure of a TWT,” IEEE Trans. Electron Devices, vol.34, pp. 2643-2648 (1987).
  95. U. Tiwari and B. N. Basu, “Non-iterative method for the synthesis of convergent Pierce electron guns,” IEEE Trans. Electron Devices, vol.34, pp. 1218-1221 (1987).
  96. P. K. Jain, K. V. R. Murthy, S. N. Joshi, and B. N. Basu, “Effects of the finite thickness of the helix wire on the characteristics of the helical slow-wave structure of a traveling-wave tube,” IEEE Trans. Electron Device, vol.34, pp. 1209-1213 (1987).
  97. V. P. Singh, B. N. Basu, and R. K. Jha,” An estimate of interaction impedance of a vane-loaded helix using equivalent circuit analysis,” IEEE Trans. Microwave Th. & Tech., vol. 33, pp. 182-183 (1986).
  98. B. N. Basu, R. K. Jha, A. K. Sinha, and L. Kishore, “Electromagnetic wave propagation through an azimuthally perturbed helix,” J. Appl. Phys. vol.58, pp. 3625-3627 (1985).
  99. M. P. Sinha, R. K. Jha, B. N. Basu, and R. K. Prasad, “Electromagnetic wave propagation in a planar helix with a metal shield,” J. Appl. Phys., vol.57, pp. 4480-4481 (1985).
  100. V. N. Singh, V. P. Singh, B. N. Basu, and R. K. Jha, “Interaction impedance of an inhomogeneously loaded helical slow-wave structure,” J. Instn. Electron. & Telecomm. Engrs., vol. 31, pp. 183-184 (1985).
  101. V. P. Singh, B. N. Basu, and R. K. Jha, “Theoretical mode gain in a non-intercepting gridded dual-mode broadband helix TWT,” J. Instn. Electron. & Telecomm. Engrs., vol. 31, pp. 180-183 (1985).
  102. B. N. Basu, M. P. Sinha, and N. C. Vaidya, “Simple theoretical modelling for helix-type travelling-wave tube for its gain-frequency response,” Indian J. Pure & Appl. Phys. vol. 23, pp. 231-233 (1985).
  103. B. N. Basu, B. B. Pal, V. N. Singh, and N. C. Vaidya, “Optimum design of a potentially dispersion-free helical slow-wave circuit of a broadband TWT,” IEEE Trans. Microwave Theo. & Tech., vol. 32, pp. 461-463 (1984).
  104. V. N. Singh, B. N. Basu, B. B. Paul, and N. C. Vaidya, “Design curves for an inhomogeneously-loaded slow-wave structure for a broadband travelling-wave tube,” J. Instn. Electron. & Telecomm. Engrs., vol. 30, pp. 55-58 (1984).
  105. V. N. Singh, B. N. Basu, B. B. Paul, and N. C. Vaidya, “Equivalent circuit analysis of a system of coupled helical transmission lines in a complex environment,” J. Appl. Phys., vol. 54, pp. 4141-4146 (1983).
  106. A. K. Sinha and B. N. Basu, “Dielectric-loaded delay-line with an inner metallic conductor,” Indian J. Pure & Appl. Phys. vol. 19, pp. 682-684 (1981).
  107. B. N. Basu and A. K. Sinha, “Dispersion shaping using an inhomogeneous dielectric support for the helix in a travelling-wave tube,” International J. Electronics, vol. 50, pp. 235-238 (1981).
  108. A. K. Sinha, B. N. Basu, and K. N. Upadyaya, “Ferrite-loaded helical delay line with coaxial inner conductor,” J. Instn. Electron. & Telecomm. Engrs., vol. 27, pp. 317-318 (1980).
  109. A. K. Sinha and B. N. Basu, “Dispersion-shaping in a helix slow-wave structure using metal fins,” J. Instn. Electron. & Telecomm. Engrs., vol. 26, pp. 318-320 (1980).
  110. A. K. Sinha and B. N. Basu, “Design of a dielectric-supported helix in a glass envelope,” J. Instn. Electron. & Telecomm. Engrs., vol. 26, pp. 185-187 (1980).
  111. A. K. Sinha and B. N. Basu, “Circuit parametrs for a complex helical SWS combining results for simpler configurations,” Indian J. Pure & Appl. Phys. vol. 18, 141-143 (1980).
  112. B. N. Basu and S. N. Joshi, “A heuristic formula for the dielectric loading factor of a helix supported by dielectric circular rods.” Indian J. Pure & Appl. Phys., vol. 18, pp. 63-64 (1980).
  113. B. N. Basu, “Field analysis of a practical helical slow-wave structure for TWT’s,” Indian J. Pure & Appl. Phys. vol. 18, pp. 64-66 (1980).
  114. S. N. Joshi and B. N. Basu, “Equivalent circuit analysis of a practical slow-wave structure for TWT’s,” J. Instn. Electron. & Telecomm. Engrs. vol. 25, pp. 423-425 (1979).
  115. A. K. Sinha, B. N. Basu, and L. Kishore, “Interaction impedance of a practical slow-wave structure for high power broadband TWT,” J. Instn. Electron. & Telecomm. Engrs., vol. 25, pp. 360-362 (1979).
  116. B. N. Basu, “Equivalent circuit analysis of a dielectric-supported helix in a metal shell,” International J. Electronics, vol. 47, pp. 311-314 (1979).
  117. B. N. Basu, “A hydrodynamical theory for parametric amplification in beam-plasma amplifiers,” Indian J. Pure & Appl. Phys., vol 16, pp. 854-856 (1978).
  118. N. B. Chakrabarti and B. N. Basu, “A coupled-mode technique for the analysis of optimum gain double-beam amplifiers,” J. Instn. Electron. & Telecomm..Engrs., vol. 22, pp. 775-777 (1976).
  119. N. B. Charkabarti and B. N. Basu, “Second harmonic generation using spatially-varying static electron number density in a magneto-plasma,” J. Plasma Phys., vol. 12, pp. 405-415 (1974).
  120. B. N. Basu, “Nonlinear second harmonic generation in bounded cold beam-hot plasma system,” Indian J. Pure & Appl. Phys., vol. 12, pp. 35-38 (1974).
  121. N. B. Chakrabarti and B. N. Basu, “Third-order saturation effects in a longitudinal beam-plasma system in the one-dimensional case,” Indian J. Pure & Appl. Phys., vol. 11, pp. 235-237 (1973).
  122. N. B. Chakrabarti and B. N. Basu, “Difference frequency generation using nonlinear interaction between a modulated electron beam and a collisionless plasma,” International J. Electronics, vol. 34, pp. 65-74 (1973).
  123. B. N. Basu, “Second harmonic generation using nonlinear interaction between a modulated electron beam and a collisionless plasma,” Indian J. Pure & Appl. Phys., vol.10, pp. 64-65 (1972).
  124. N. B. Chakrabarti and B. N. Basu, “Nonlinear mixing in a double-beam device under Eulerian approximation in the one-dimensional case,” Indian J. Pure & Appl. Phys., vol. 8, pp. 1-7 (1970).
  • Technical report
    1. CSIR-CEERI-IR-01/VT/78: B. N. Basu and S. N. Joshi: Equivalent circuit analysis of a helix in free space.
    2. CSIR-CEERI-IR-02/VT/78: B. N. Basu: Field analysis of dielectric supported and shieldedsheath helix.