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“Ali said to Kaamil (al-insān al-kāmil):

Knowledge is better than wealth. Knowledge protects
you while you have to protect your wealth. Knowledge is
a judge, while wealth has to be judged on. Wealth
decreases when it is expended, while knowledge purifies
when it is given.”

“Ali said in a poem:

Succeed with knowledge and live energetically
forever; men are all dead, only the possessors of
knowledge are truly alive."
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“What man ‘learns’ is really what he discovers by taking the
cover off his own soul, which is a mine of infinite knowledge.”
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Professor N. B. Chakrabarty, who at the Indian
Institute of Technology, Kharagpur, India,
mentored my doctoral research in the area of
nonlinear Eulerian hydrodynamic analysis of
double-stream amplifier (Haeff tube) and
beam-plasma amplifier.

Professor Alexander Scott Gilmour, Jr., who
responded to my request and authored a
paper entitled “An overview of my efforts to
bridge the gap in the microwave tube area
between what universities provide and what
the industry needs” in the Special Issue on
“Microwave Tubes and Applications” in the
Journal of Electromagnetic Waves and
Applications (Taylor and Francis) (issue 17, vol.
31, 2017), which I guest-edited. Dr. Gilmour is
the recipient of J. R. Pierce award in 2018. I
was one of his references for this award.

Dedication



Two basic constituents:
Electron beam
Electromagnetic interaction structure

Principal parts:
Electron gun: beam formation
Focusing structure: beam confinement
Collector: collection of spent beam
Slow-wave structure (SWS)
RF input and output couplers
Attenuator

Travelling-Wave Tube
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“Success has many fathers, but failure is an orphan.”

From the historical time line we know 
who invented what.    

“We learn from history that we do not learn from history.” ⎯ GWF Hegel
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Who did invent transmission and reception of radio waves?

(a) G. Marconi

(b) A. S. Popov

(c) J. C. Bose

(d) M. N. Saha

Answer: (c) J. C. Bose

_________________________________  

Who did invent travelling-wave tube? 

(a) R. Kompfner

(b) N. E. Lindenblad

(c) J. R. Pierce 

(d) A. Haeff 

Answer: (d) A. Haeff



J.C. Bose (1858-1937) at the Royal Institution, London, 1897 
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J C Bose

By 1895, Sir. J. C. Bose made the first public

demonstration of radio waves in the Kolkata town

hall. Details of the apparatus used are vague, but

at a distance of 75 feet, he remotely rang an

electric bell and ignited a small charge of

gunpowder. He called it Adrisya Alok, or

“Invisible Light”. The frequency of operation is

nearly 60 GHz. He termed horn antenna as

collecting funnel.

Courtesy:  C Subhradeep (CEERI)
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IEEE MILESTONE IN ELECTRICAL ENGINEERING 
AND COMPUTING

First Millimeter-Wave Communication Equipment by JC Bose, 1894-1896
Sir Jagadish Chadra Bose, in 1895, first demonstrated at Presidency College,
Calcutta, India, transmission and reception of electromagnetic waves at 60 GHz
over a distance of 23 meters, through two intercepting walls by remotely
ringing a bell and detonating gunpowder. For this communication system, Bose
developed entire millimetre-wave components such as: a spark transmitter,
coherer, dielectric lens, polarizer, horn antenna and cylindrical diffraction
grating.

September 2012

IEEE Monogram

Courtesy:  C Subhradeep (CEERI)



“In 1895 Bose gave his first public demonstration of electromagnetic waves, using them to

ring a bell remotely and to explode some gunpowder. In 1896 the Daily Chronicle of England

reported: "The inventor (J.C. Bose) has transmitted signals to a distance of nearly a mile and

herein lies the first and obvious and exceedingly valuable application of this new theoretical

marvel."

“Popov in Russia was doing similar experiments, but had written in December 1895 that he

was still entertaining the hope of remote signaling with radio waves.”

“The first successful wireless signaling experiment by Marconi on Salisbury Plain in England

was not until May 1897.”

Source: D. T. Emerson, “The work of Jagadis Chunder Bose: 100 years of mm-wave

research,” IEEE Trans. Microwave Th. Tech., December 1997, 45, No. 12 (2267-2273 ).
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Sketch of the travelling-wave tube from R. Kompfner’s note book (1942). The helix pitch is 

tapered for velocity re-synchronization. (Fig. 12.2 of the book: A.S. Gilmour, “Klystrons, 

Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons,” (Artech 

House, Norwood, 2011))
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N. E. Lindenblad’s travelling-wave tube amplification at 390 MHz over a 30 MHz band (U. S. 

Patent 2,300,052, filed on May 4, 1940. 

(Fig. 12.1 of the book: A.S. Gilmour, “Klystrons, Traveling Wave Tubes, Magnetrons, 

Crossed-Field Amplifiers, and Gyrotrons,” (Artech House, Norwood, 2011)) 

Helix wound around the outside the glass envelope. Signal applied to the grid of the

electron gun (also applied to the helix in other experiments). Series of permanent magnets

(non-periodic). The helix pitch is tapered for velocity re-synchronization.
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“The patent Andrei Haeff filed in 1933

for a primitive type of traveling-wave 

tube has been largely ignored.”

Courtesy SK Datta



15

• Haeff invented TWT in 1933.

(Haeff also invented the double-stream amplifier (Haeff tube), in which two electron beams
with slightly different DC velocities are intimately mixed such that the slow space-charge
wave of the faster beam couples to the fast space-charge wave of the slower beam resulting
in growing waves).

• Lindenblad invented TWT in 1940.

• Kompfner invented TWT, however, not before 1943.

• Pierce and Field significantly contributed to the development of the TWT, however, not
before 1947.
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• Historical timeline of the invention of the travelling-wave tube

• Electron bunching and requirement of near-synchronism

• Space-charge waves and coupling to structure wave

• Gain equation

• Hot attenuation

• Johnson’s start oscillation condition    

• Some broadbanding aspects

Scope of This Presentation
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The TWT is a growing-wave device (tube). It is an amplifier.

It is a slow-wave tube in which the interaction structure is a slow-wave structure (such as helix) 

that supports RF waves of phase velocity less than the speed c of light. 

The applied DC magnetic field confines the electron beam in the device; it does not 

take place in beam-wave interaction. 

It belongs to the class of linear beam, O-type, Cerenkov radiation type of vacuum 

electron devices/ microwave  tubes. In this tube, the bunched electrons transfer their axial 

kinetic energy to RF waves. 
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Bunching of typically two electrons ‘A’ and 

‘D’ subjected to the accelerating and 

decelerating RF electric fields, 

respectively, in the interaction region of a 

TWT around a reference electron ‘R’ that 

experiences no such fields. 

Electrons are bunched though there is no 

net energy transfer from the electron 

beam to RF waves.

Axial Bunching in a Travelling-Wave Tube  



Near-synchronism: net 

energy transfer from 

the beam to RF waves

phvv
~

0 

20

ph
vv =

0

Exact synchronism: no 

net energy transfer 

between the beam to 

RF waves



Millimetre-Wave Consideration in Conventional 

Microwave Tubes 

B. N. Basu, Electromagnetic Theory and Applications in Beam-wave 

Electronics (World Scientific, Singapore,1996)

Reduction of structure size

Reduction of beam radius

Larger magnetic field for beam confinement for

Smaller beam radius b

Larger beam current  I0

Smaller beam voltage V0

Larger beam perveance  I0 / (V0)
3/2

Heavy solenoids or advanced magnetic materials are required

Larger cathode emission densities entailing the risk of cathode life

21

22/1
0

2/3

0

0
2

2
Brillouin bV

I
B


=

See Chapter 7 in     

B. N. Basu, 

Electromagnetic 

Theory and 

Applications in  

Beam-wave 

electronics (World 

Scientific,   

Singapore, 1996). 



Higher beam voltage can increase the beam power and also reduce the required

magnetic field but is associated with a reduced beam perveance making it difficult to

contain thermal electrons, and has limitation arising from backward-wave oscillation in

wideband helix TWTs.

Lower beam current can reduce magnetic field but it reduces the beam power and is

associated with a reduced beam perveance making it difficult to contain thermal

electrons.

Tight tolerances are required for tiny interaction structures.

Thermal management becomes difficult.

Pressure fitting, instead of more effective brazed-helix technology, becomes

difficult to implement.

Special thermally conducting materials, such as Type II-A diamond, for dielectric

helix-supports may be used.

Plasma spraying of beryllia on the surface of the helix can be done.

22

A.S. Gilmour, Jr., Microwave Tubes (Artech House, Washington, 1986)
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B. N. Basu, Electromagnetic Theory and Applications in 

Beam-wave electronics (World Scientific, Singapore, New 

Jersey, London, Hong Kong,  1996). 

The above book will provide a self-contained analysis of the gain equation of a

TWT obtained by combining the circuit and electronic equations taking due care

to involve the interaction impedance instead of the characteristic impedance in

the circuit equation, for the sake of rigour in the analysis.



The mechanism of interaction of a slow-wave device such as

the TWT is based on the property of an electron beam to

support space-charge waves.

The electron beam supports two space-charge waves⎯Hahn

and Ramo fast and slow space-charge waves with phase

velocities greater and slower, respectively, than the DC electron

beam velocity

25

Space-Charge Waves
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The upper sign refers to the fast space-charge wave 

on the electron beam with phase velocity greater than 

the DC beam velocity.

The lower sign refers to the slow space-charge wave 

on the electron beam with phase velocity less than 

the DC beam velocity.

Taking RF 

dependence as )exp( ztj −
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Space-Charge Waves

Upper sign for the fast wave and lower sign for the slow wave 
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Amplification of space-charge waves takes place on an

• electron beam of uniform diameter in a resistive-wall waveguide.

• electron beam in a rippled-wall (varying diameter) conducting-wall waveguide.

• electron beam of varying diameter in a conducting smooth-wall waveguide.

• electron beam mixed with another beam of a slightly different DC electron beam velocity 

(two-stream amplifier/Haeff tube).

• electron beam penetrating through a plasma (beam-plasma amplifier).

• electron beam interacting with RF waves supported by a slow-wave structure (TWT).

30
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Phase and group wave velocities are 

each positive at the TWT operating point

00 =− pv  

Upper sign for the fast space-charge wave

Lower sign for the slow space-charge wave 

Intersection between slow space-charge and circuit/structure waves

at the TWT operating point in the dispersion plot

po
v  =−



Some TWT features

• Cerenkov radiation type

• Magnetic field for beam confinement

• Larger magnetic field at higher frequencies 

for beam confinement 

• Conversion of axial beam kinetic energy

• Axial non-relativistic electron bunching

• Near-synchronism between DC beam 

velocity and circuit phase velocity

• Electron beam velocity to be slightly 

greater than RF phase velocity 

32

• Slow space-charge wave on electron 

beam to couple to forward circuit wave 

• Space-charge-limited operation

• Pierce gun

• Smaller structure sizes at higher 

frequencies

• BWO absolute instability above the pi-

point frequency



Pierce’s theory for the beam-present dispersion relation of a 

travelling-wave tube and for its gain 

Pierce’s elegant method is to find the ratio 

of the circuit voltage     to RF beam current

by the circuit theory approach and find the same ratio by the electronic equation approach

and then equate these ratios found by these two approaches.

V i

i

V

33



Circuit Equation

Let us deduce the circuit equation

being the ratio of circuit voltage V to RF beam current i in terms of the interaction impedance

K of the slow-wave structure, cold (beam-absent) propagation constant 0 of the isolated

structure and hot (beam-present) propagation constant  of the beam-circuit coupled system.

The slow-wave structure is considered as a circuit. The effect of the element of a modulated

beam at a point on the circuit is simulated by an infinitesimal current generator at

that point. Such an infinitesimal generator sends two circuit waves in opposite directions, one to

the left and one to the right such that the amplitudes of the circuit electric field intensity

associated with these waves are equal. We find the contribution to the circuit field intensity at a

circuit point from all such infinitesimal current generators distributed along the circuit both to the

left and to the right of the point. These contributions are then added to the circuit field intensity

at the point caused by the power injected at the input end of the circuit to find the total circuit

field intensity at the point in the presence of the modulated beam.

−


−=

)( 2

0

2

3

0
K

i

V
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(to be deduced)



The scale to measure the axial distances of the point (z) where to find the electric field intensity,

shown as a dot (P), as well as of the points of locations of two arbitrarily chosen infinitesimal

current generators (x), shown as crosses, one (GL) to the left and the other (GR) to the right of P.

The effect of the element of a modulated beam at a point on the circuit is simulated by an

infinitesimal current generator at that point that ‘sees’ half the characteristic impedance of

the transmission line, being equivalent to two such characteristic impedances in parallel,

corresponding to two halves of the supposedly matched line.
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Let dER and dEL be the amplitudes of the electric field intensity at a point on the circuit associated 

with two waves, one travelling to the right and another to the left of the point, respectively, both 

launched by an infinitesimal current generator. The electric field intensity at a point on the circuit 

caused by an infinitesimal current generator to the left of the point is dER exp −j0(z −x), which is 

associated with a wave travelling to the right from the generator, where 0 is the axial phase 

propagation constant; z is the distance of the point and x is the distance of the infinitesimal current 

generator, both measured from the input end of the circuit. Similarly, the electric field intensity at 

the point caused by a current generator to the right of the point is dEL exp −j0(x − z), which is 

associated with a wave travelling to the left from the generator. 

dxzxjxdxxzjxzjEzE
z

L

z

Ri
)(exp)()(exp)()exp()(

00

0

0
−−+−−+−=  



where Ei is the amplitude of the circuit electric field intensity injected at the input end (z = 0) of  the
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(to be recalled)



The current generators see identical halves of the matched line both to its left and to its right. 
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(to be recalled)
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using Leibnitz formula
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(to be recalled)

(recalled)

Upon differentiation

(to be recalled)
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(recalled)

(to be recalled)

Upon differentiation

(recalled)



Let us now proceed to express the above expression in a form that explicitly involves

a beam parameter. 

For this purpose, let us find the increment dP of circuit power at a point due to an

infinitesimal current generator simulating the effect of a modulated electron beam-element of

length dz coupled to the circuit at the point.

LR
dPdPdP +=

where dPR and dPL are the increments of circuit power dP at the point associated with two waves 

sent in the right and left directions by the infinitesimal current generator situated to the left right 

of the point, respectively. 
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LR
dPdPdP += (rewritten and to be recalled later)

Interaction impedance of the slow-wave structure (circuit) is defined as

P

V
K z
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where P is the power propagating down the structure. Vz is the longitudinal voltage which

may be found by taking the negative integral of the axial electric field intensity Ez=Ezsinz

between the limits z=0, the reference point where the electric field intensity is zero, and 

z=g/4 where the intensity is maximum, where Ez(0) is the peak value of intensity, and 

g (=2/) is the guide wavelength of the wave supported by the waveguiding slow-wave 

structure. Thus, we get 
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Interpreting  as the cold structure 

propagation constant 0
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(recalled)
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Since the increment of circuit power dP at the point owes to the modulation of the beam 

element of length dz, dP may also be equated to the power lost by the beam element of 

length dz subjected to the circuit field at the point. In order to find the latter, the beam 

element is divided into two halves, each of length dz/2, which experience the electric 

field intensities EL and ER associated with the power propagating to the left and to the 

right of the circuit point coupled to the beam element, respectively.

(to be recalled)

(increment of circuit power)
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The power lost, that is the energy lost per second, by an electron belonging to that half

of the modulated beam element which is subjected to the electric field intensity EL may

be found as −eELv1, being equal to the product of −eEL, the force on the electron, and

v1, the distance moved by it per second under rf modulation. The power lost per electron

thus found becomes positive, since e carrier a negative sign, v1 and EL being

interpreted to have the same direction. Multiplying this quantity by ndz/2, the number

of electrons in the element half considered, one may find the power lost by this half

as (−eELv1)(n  dz/2), where n is the rf number density of electrons of the perturbed

beam element and  is the beam cross-sectional area. Similarly, the power lost by the

remaining half which is subjected to the circuit electric field intensity ER may be found

as (−eER v1)(n  dz/2). Adding these quantities one may then find the power lost by

the complete beam element of length dz which may be equated to dP. Thus one gets

2/2/
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(power lost by the beam elemental length dz)

(power lost by the beam elemental length dz)
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+−= (rewritten)

(negative sign indicating 

that the power lost is 

positive if i and (ER + EL)

are directed oppositely) 

(power lost by the beam 

elemental length dz)
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(increment of circuit power)

On equating power lost by the beam 

element with increment of circuit power
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Electronic Equation

Let us deduce the electronic equation
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being the ratio of circuit voltage V to RF beam current i.

Let us now proceed to find this ratio by studying the motion of the electrons subjected to 

the circuit electric field intensity E plus the space-charge electric field intensity Es.  
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(electronic equation)
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Equating the right hand sides of the above two equations we deduce 

the dispersion of a TWT as follows:

(Dispersion relation of a travelling-wave tube)

(recalled) 

(recalled) 
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(dispersion relation of a travelling-wave tube)   
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(deduced) 

Weak beam-structure coupling:

For small beam current (I0~0), the circuit/structure waves

and the space-charge waves get separated 

corresponding to weak beam-structure coupling.  














+−








=

−


−

e

pe

j

j

I

VK



 22

0

0

2

0

2

0
)(2

(dispersion relation of a travelling-wave tube)   

(1) An electron beam supports slow and fast space-charge waves, both with forward phase 

velocities.

(2) A slow-wave structure, treated as a transmission line circuit equivalent, supports two 

circuit waves, one with forward phase velocity and another with backward phase velocity.

(3) A beam-circuit coupled system such as a travelling-wave tube is therefore expected to support 

forward waves ⎯ three forward waves and one backward wave.

(4) The dispersion relation of a travelling-wave tube is a fourth-degree equation giving four 

solutions corresponding to these three forward waves and one backward wave.

(5) We look forward to the solutions of the dispersion relation for three forward waves considering

the structure to be matched such that no backward wave is excited.         
52

(deduced) 

It is a fourth-degree equation. 



Following Pierce’s approach, we look for the solutions for  for the three forward waves, 

considering the structure to be matched such that no backward wave is excited. Hence, 

expecting that  will not differ appreciably from the beam propagation constant e, we can

express  in terms of the dimensionless quantities C and , as follows:   
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(dispersion relation of a travelling-wave tube)   
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(recalled) 

C is tacitly defined so by Pierce from the 

feedback of the end result of his analysis 

leading to his famous gain equation 

G=A+BCN.   
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Nearly non-synchronous beam ( vp  v0 ):

(Pierce’s velocity synchronization parameter)
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Let us put the cold circuit  axial-propagation constant as:
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(dispersion relation of a travelling-wave tube)   
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(cubic equation) (to be recalled) 
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For the matched structure with no backward wave excited, let us express the circuit voltage 

in terms of three forward-wave components as follows at a distance z from the input end:
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(to be recalled)

We invoke the condition that at the entry of the interaction structure the electron beam 

is not modulated enabling us to write:
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(defined)

(to be recalled in the analysis of ‘hot’ attenuation)
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(to be recalled in the analysis of ‘hot’ attenuation)
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Cubic dispersion equation:
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Hot Attenuation

• Reflections take place at the input and output ends of a slow-wave structure due to imperfect 

matching

• Reflection at the input end sets up three forward waves one of which spatially grows and travels 

to the output end where it is reflected again, and the repetition of the process would eventually 

cause a regenerative oscillation in the device. 

• In the presence of the attenuator, the RF modulation on the beam remains, so that, in the forward 

direction, the spatially growing wave is excited again beyond the attenuator region. In the reverse 

direction, however, the growing wave interaction does not take place, and, consequently, the circuit 

field in the wave traveling in the reverse direction is reduced to zero beyond the attenuator and 

does not spatially grow further in this direction to reach the input end of the structure.

In order to prevent oscillations in the device, 

therefore, a lossy section (attenuator) is placed 

along the slow-wave structure roughly 1/3 to 1/2 

way down the structure in the form of

• an absorbing layer on the dielectric supports 

for the helix of a helix-TWT called the attenuator, 

• a lossy ceramic button, loading a spacer cavity 

wall in the structure of a coupled-cavity



Extension of Pierce's theory to estimate ‘hot’ attenuation

• One attenuator section is added per about 20 dB gain of the device.

• We are going to estimate  'hot' attenuation for infinite 'cold' attenuation.

• We assume that beyond the attenuator, the circuit voltage = 0

(corresponding to ‘cold' attenuation =  ).

• RF modulation on the beam however remains beyond the attenuator region. 

63



a

3

a

2

a

1

b

3

b

2

b

1
vvvvvv ++=++



V
v 

1



V
v




1 0=QC

Attenuator length is negligibly small. The superscripts a and b refer to the quantities

immediately preceding and following the attenuator length in the following 

expressions:

3

a

3

2

a

2

1

a

1

3

b

3

2

b

2

1

b

1



VVVVVV
++=++

0=QC
21



V
J


a

3

a

2

a

1

b

3

b

2

b

1
JJJJJJ ++=++

21



V
J 

2

4
1



QC

V
V

+

=

(recalled)

2

3

a

3

2

2

a

2

2

1

a

1

2

3

b

3

2

2

b

2

2

1

b

1



VVVVVV
++=++

21



V
J




(recalled)

(recalled)

(recalled)

64



)exp()1(exp)
)/1)(/1(

1
)(/41(

11

1312

2

1inout
lCxlCyjQCVV

ee



 −−

−−
+=

)exp()1(exp)
)/1)(/1(

1
(

11

1312

inout
lCxlCyjVV

ee



−−

−−
=

0=QC

For the contributions from all the three forward wave components, and taking l1 as the distance 

where the attenuator begins

1212

2123

in

a

2
)1(exp)exp()

)/1)(/1(

1
( lCyjlCxVV

ee
−−

−−
= 



1111

1312

in

a

1
)1(exp)exp()

)/1)(/1(

1
( lCyjlCxVV

ee
−−

−−
= 



1313

3231

in

a

3
)1(exp)exp()

)/1)(/1(

1
( lCyjlCxVV

ee
−−

−−
= 



65



0=== dQCb








=+=

−−=+=

−=+=

jjyx

jjyx

jjyx

333

222

111

)2/1(2/3

)2/1(2/3















==

−=−=

−==

1,0

2/1,2/3

2/1,2/3

33

22

11

yx

yx

yx

1111

ina

1
)1(exp)exp(

3
lCyjlCx

V
V

ee
−−= 

1212

ina

2
)1(exp)exp(

3
lCyjlCx

V
V

ee
−−= 

1313

ina

3
)1(exp)exp(

3
lCyjlCx

V
V

ee
−−= 

3

a

3

2

a

2

1

a

1

3

b

3

2

b

2

1

b

1



VVVVVV
++=++ (recalled)

2

3

a

3

2

2

a

2

2

1

a

1

2

3

b

3

2

2

b

2

2

1

b

1



VVVVVV
++=++ (recalled)

0b

3

b

2

b

1
=++ VVV (‘cold' attenuation = )

))](2(exp
3

1

))(2(exp
3

1
))(2exp(

3

2
[)2(exp

3

331

22111111

jyxCN

jyxCNjyxCNNj
V

V inb

+−

+−+−=





(recalled)Nl
e

 2=Solving for b

1
V

66



))](2(exp
3

1

))(2(exp
3

1
))(2exp(

3

2
[)2(exp

3

331

22111111

jyxCN

jyxCNjyxCNNj
V

V inb

+−

+−+−=





1111

ina

1
)1(exp)exp(

3
lCyjlCx

V
V

ee
−−= 

(rewritten)

Nl
e

 2=(recalled)

))(2exp()2exp(
3

1111

ina

1
jyxCNNj

V
V +−= 

)1,0;2/1,2/3;2/1,2/3(
332211
==−==−== yxyxyx

)
2

3

2

3
(2exp

3

1
)32(exp

3

1

3

2
11

1

1 jCNCN
V

V
a

b

−−+−+= 

)1,0;2/1,2/3;2/1,2/3(
332211
==−==−== yxyxyx

Taking CN1  0.2 (typical practical values) 
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V 'Hot' Attenuation  20 log103/2 = 3.52 dB (typically, 

though 'Cold' Attenuation =  !
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Johnson’s  Start-Oscillation Condition



Johnson's start-oscillation condition

(H. R. Johnson, "Backward-wave oscillators, " Proc. IRE, June 1955, pp. 684-694)

Backward-wave mode: The phase velocity vp of the slow-wave structure is 

positive and its group velocity vg is negative.

Let us recall the following:

cold circuit propagation constant 

(     velocity synchronization parameter)

(d = structure loss parameter)

(in the absence of circuit loss)

(TWT dispersion relation)

(TWT cubic dispersion relation)
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For power flow in the opposite direction (backward-wave mode) K has to 

be interpreted with a change of sign

(TWT dispersion relation)

Consequent change in the sign of the 

right hand side of the TWT cubic 

dispersion relation:

(cubic dispersion relation corresponding to the 

backward-wave mode)
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(cubic dispersion relation corresponding to the 

backward-wave mode)

Output voltage for backward-wave mode:

Contribution from the growing-wave component:

(recalled)

(to be recalled)
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Contribution from the growing-wave component:

(rewritten)

Combing the contributions from all the three wave components, we obtain:
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(rewritten)

(oscillation condition)

(to be recalled)
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The following parameters are relevant to finding the parameter         

beam radius

(independent of beam current)

 has to be interpreted as the frequency 

where the phase velocity of the forward-

wave mode of the SWS becomes equal to 

that of the backward-wave mode. K has to 

be taken as the interaction impedance at 

this frequency. 
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One can simultaneously solve the following two equations for

(i)

(ii)

The solution for CN thus obtained may be interpreted as the start-oscillation current I0 while 
making use of the relations:
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Zero-to-slightly-negative-dispersion structure for wideband performance

Anisotropically loaded helix:

Metal vane/ segment loaded envelope

Inhomogeneously loaded helix:

Helix with tapered geometry dielectric supports such as

half-moon-shaped and T-shaped supports

Negative dispersion ensures constancy of Pierce’s velocity synchronization parameter b

with frequency

Multi-dispersion structures for wideband performance

Some concepts in widening helix-TWTs 
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Negative dispersion:       increases with frequency 
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pvv −0 decreases with frequency
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→ Numerator of the expression for b decreases with frequency

K decreases with frequency and hence the 

→ Denominator of the expression for b decreases with frequency 

b remains constant with frequency

Constancy 

of b with 

frequency 

with  

negative 

dispersion

81



G is proportional to lfK 3/1

Conventional TWTs with multi-dispersion, multi-section structures 

Small-signal gain equation
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G is proportional to lfK 3/1

Gain-frequency response: 

Lower gain at lower frequencies as G is proportional to f

Lower gain at higher frequencies as G is proportional to K1/3, the 

latter decreasing with frequency

Conventional structure: If you had increased the length l, then the gain G would be 

compensated at lower frequencies f. However, then the gain G would become very 

high at higher frequencies f entailing the risk of oscillation in the device.

Therefore, let us arrive at the design of a helical slow-wave structure the effective 

length of which is large at lower frequencies, which at the same time becomes 

relatively smaller at higher frequencies. (The design should ensure that the gain is 

not enhanced at any frequency to a high value causing oscillation in the device). 

The answer lies in a multi-dispersion, multi-section helix TWTs!   

. 
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One positive-dispersion helix section of length l1 synchronous with the beam only at 

lower frequencies and the other nearly dispersion-free helix section of effective length 

l2 synchronous with the beam both at lower and higher frequencies.

Effective length increased to l1+ l2 at lower frequencies

Effective length reduced to l2 at higher frequencies (since the section of length l1 goes

out of synchronism at higher frequencies

We have to control (i) the nature and the amounts of dispersion of the sections by 

suitably loading the sections and (ii) the lengths of the two sections  

Gain is proportional to

Analysis should be capable of finding the dispersion and interaction impedance

characteristics of the structure sections, say, with metal segment loaded

envelopes and their control by structure section parameters like segment

dimensions and relative section lengths.

Select structure sections such as segment-loaded helices of controllable 

dispersion
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Two-section configuration with one of the sections providing a double-hump 

peaks in the gain frequency response while the second section providing a 

single peak between the humps of the first section

Twystron: The first section is a klystron providing a double-hump gain-frequency 

response. The second section is a TWT providing a peak between the two humps of 

the first section in the gain-frequency response. 
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Interaction structure (gyrotron) (continued)

Smooth waveguides instead of periodic structures 

Beam not located close to structure boundary

Less reduction of waveguide size with frequency as compared to a slow-wave structure

Larger interaction volume, allowing higher power operation, with reduced wall loss density 

<2 kW/cm2 particularly for CW and long-pulse operation

Over-sized waveguides for reduced wall loss density due to reduced field and increased wall   

area, though inviting mode competition

Number of resonant modes in a give frequency range proportional to the cavity radius

Cavity of diameter and length can support 30 modes in 1% frequency interval5 6
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Source: MTRDC (DRDO)
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Source: MTRDC (DRDO)
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Source: MTRDC (DRDO)
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Source: MTRDC (DRDO)



Angular segment Straight segment T- segment
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Source: MTRDC (DRDO)



Helix-support-rod embedded 

in the metal vane

Metal-coated dielectric helix-support rods
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Source: MTRDC (DRDO)



Provides negative dispersion with quite high 

interaction impedance compared to other segment 

variants
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Broadbanding Techniques 

❑ Homogeneous dielectric loading   

cannot shape structure dispersion for 

wide device bandwidths. 

❑ Inhomogeneous dielectric 

loading by tapered-cross-section 

helix supports can shape structure 

dispersion for wide device 

bandwidths. 

❑ Anisotropic loading by 

azimuthally periodic metal  vanes 

provided with the metal envelope 

can shape structure dispersion for 

wide device bandwidths.
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❑ Axially periodic disc loading 

cannot shape structure 

dispersion and cannot

widen device bandwidth 

but can enhance device gain.      



providing azimuthally periodic metal vanes/segments with the metal

envelope of the helical slow-wave structure and optimizing the structure

parameters, thereby obtaining the desired dispersion characteristics of the

structure for wide device bandwidths

appropriately shaping the cross-sectional geometry of dielectric helix

supports, thereby obtaining the desired dispersion characteristics of the

structure for wide device bandwidths

using multi-dispersion, multi-section helical structures

The bandwidth of a TWT can be widened by
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For any clarification, if required, you may contact me

through my email address
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