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“For whatever may be said about the importance of
aiming at depth rather than width in our studies, and
however strong the demand of the present age may be for
specialists, there will be work, not only for those who
build up particular sciences and write monographs on
them, but for those who open up such communications
between the different groups of builders as will facilitate
a healthy interaction between them.”

⎯ James Clerk Maxwell
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In 1895 Bose gave his first public demonstration of electromagnetic
waves, using them to ring a bell remotely and to explode some

gunpowder. In 1896 the Daily Chronicle of England reported: "The

inventor (J.C. Bose) has transmitted signals to a distance of nearly a

mile and herein lies the first and obvious and exceedingly valuable

application of this new theoretical marvel."

“Popov in Russia was doing similar experiments, but had written in

December 1895 that he was still entertaining the hope of remote

signaling with radio waves.”

“The first successful wireless signaling experiment by Marconi on
Salisbury Plain in England was not until May 1897.”

Source: D. T. Emerson, “The work of Jagadis Chunder Bose: 100 years of mm-wave research,” 
IEEE Trans. Microwave Th. Tech. December 1997, 45, No. 12 (2267-2273) 
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There is only one nature — the division into science and 
engineering is a human imposition, not a natural one. 
Indeed, the division is a human failure; it reflects our 
limited capacity to comprehend the whole. 

— Sir William Cecil Dampier

Electromagnetic theory → Science

Circuit theory → Engineering
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Maxwell’s equations

“Simple enough to imprint on 
a T-shirt, and yet rich enough 
to provide new insights  
throughout a lifetime of study” 

⎯ J. R. Whinnery 

“The teaching of Electromagnetics,” IEEE 

Trans. Education, Vol. 33, pp. 3-7 (1990)
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Whinnery’s T-shirt has enough space to 
accommodate both Maxwell’s equations 
and electromagnetic boundary 
conditions 
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General boundary conditions

Dielectric (1)-dielectric (2) 

interface

Both time-dependent and 

time-independent
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Conductor (1)-dielectric (2) 

interface

Time-independent Time-dependent
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Ohm’s law

Law of parallel resistances

Electromagnetic theory Circuit theory

Joule's law

EJ
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= IRV =

RI 2 power loss

Poynting vector
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Electromagnetic 

boundary condition

Electromagnetic theory and circuit theory are 
the two sides of the same coin 



Electromagnetic theory Circuit theory
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Dispersion relation of a hollow-pipe waveguide

Boundary-value 

problem

Transmission line 

equivalent circuit 

(dispersion relation 

of a waveguide)



Dispersion relation of a helical slow-wave 

structure of a travelling-wave tube

(Helix in free space)

Electromagnetic theory Circuit theory

Boundary-value 

problem

Transmission line 

equivalent circuit 

(dispersion relation of a helix in 

free-space)
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Ohm’s Law

(wire of length L offering a resistance to the current flow)
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Joule’s Law

Poynting vector

(Ampere’s 

law)

Power density flow into the wire

Take a wire of circular cross section:
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Power density flow into the wire

Power flow over l (length) into the wire

RI 2=Joule’s circuit loss
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Circuit law of parallel resistances with the help of the boundary condition 

that the tangential component of electric field is continuous at the 

interface between two media    

( )1

( )2

1I Area 

2I

II

1A

Area 2A

l

For this purpose, the said boundary condition is applied at the interface 

between two rectangular conducting slabs in contact of the same length l, 

conductivities 1 and 2 and cross-sectional areas A1 and A2 respectively. 

Current densities J1 and J2 are related to 

electric fields E1 and E2 in the slabs 

through Ohm’s law while the current I fed 

into the slabs in contact is divided in 

currents I1 and I2 through the slabs.   
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Multiplying by l
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We have seen that the circuit theory concepts, 
namely, Ohm’s law, Joule’s law and law of parallel 
resistances can be appreciated by electromagnetic 
field theory as well. 

Will electromagnetic field theory and circuit theory 
yield one and the same dispersion relation of a 
hollow-pipe waveguide? 

Will electromagnetic field theory and circuit theory 
yield one and the same dispersion relation of a helix 
used as a slow-wave structure of a travelling-wave 
tube?  ?
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Transmission-line equivalent of a rectangular waveguide 
excited typically in the TE modes

E.C Jordan: Electromagnetic wave and Radiating Systems. Prentice-Hall 

of India, New Delhi, 1986. Chapter 8.

B.N. Basu: Engineering Electromagnetics Essentials. Universities Press, 

Hyderabad, 2015. Chapters 9 and 10.  
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Rectangular waveguide

The TE mode is also known as the H mode since it is associated with a 

non-zero value of the axial magnetic field: 

The TM mode is also known as the E mode since it is associated with a 

non-zero value of the axial electric field: 
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Rectangular waveguide with its right side wall 

located at x = 0; left side at x = a; bottom wall at y

= 0 and top wall at y = b.
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Wave equations
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Equivalent transmission-line circuit representation for TM waves.

Equivalent transmission-line circuit representation for TE waves.

222 −= kh

E.C Jordan: Electromagnetic wave and Radiating Systems. Prentice-Hall 

of India, New Delhi, 1986. Chapter 8.
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Equivalent transmission-line circuit representation for TE waves.

222 −= kh

E.C Jordan: Electromagnetic wave and Radiating Systems. Prentice-Hall 

of India, New Delhi, 1986. Chapter 8, p.266.

)(exp ztj  −

Field quantities varying as

 and  may be taken as 0 and 0, respectively.
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Rectangular waveguide

a

b

Z

Y

X

Rectangular waveguide  with its 

right side wall located at x = 0; left 

side at x = a; bottom wall at y = 0

and top wall at y = b.
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Wave equations
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(wave equation)
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TE mode:

Transmission line equivalent of a waveguide

U  has the dimension of 

current 
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TE mode:
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TE mode:

(recalled)

(recalled)

U  has the dimension of current 

and j0 /h2 has the dimension of 

voltage 



Waveguide dispersion relation

The waveguide cutoff frequency corresponds to Y = 0

00

0

2

=+= 


j
j

h
Y 222 −= kh

000

222 =−−  ck

c =









=

=

00

2 1

/





c

ck

02222 =−− cc 

2 2 2 2 0cc  − − =





c

c 
- l

in
e

(waveguide dispersion relation)

31



Characteristic impedance of the transmission line 

equivalent of a waveguide
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Transmission-line equivalent of a helical slow-wave structure

B.N. Basu, “Electromagnetic Theory and Applications in Beam-Wave 

Electronics,” World Scientific Publishing Co. Inc., Singapore, New 

Jersey, London, Hong Kong (1996).



Helical slow-wave structure of a travelling-wave tube

• Electromagnetic field Analysis

• Equivalent circuit analysis

34



Sheath-helix model

Actual helix replaced by a circular cylindrical sheath that has 

 Infinitesimal thickness

Radius equal to the mean radius of the actual helix of a finite thickness

Anisotropic conductivity: infinite conductivity and zero conductivity in 
directions parallel and perpendicular to the helix winding direction,   

respectively

Valid for large number of turns per guide wave length:
_________________________________________
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RF quantities vary as 

(non-azimuthally 

varying mode)
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For slow 

waves:

With the help of 

Maxwell’s equations

 kind second  theoffunction  Bessel modifiedorder first :)(

  kindfirst   theoffunction  Bessel modifiedorder first :)(

  kind second  theoffunction  Bessel modifiedorder zeroth :)(

    kindfirst   theoffunction  Bessel modifiedorder zeroth :)(
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Field expressions
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Field expressions
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Field expressions

four non-zero field constants
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Boundary conditions at the mean helix radius = sheath-helix radius r = a

For electromagnetic field analysis For circuit analysis
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Electromagnetic Field analysis

42



Boundary conditions at the sheath-

helix radius r = a:
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(electromagnetic field 

analysis)
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Equivalent circuit analysis of a helix

Treating the helix as an equivalent transmission line with 

distributed line parameters L and C

47



Capacitance per unit length C Boundary conditions at the 

sheath-helix radius r = a:

Eliminating B2

(to be recalled)

Helix treated as a lossless transmission line
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RF quantities vary as 

(to be recalled)
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RF quantities vary as )(exp ztj  −
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Inductance per unit length L

21  EE =

Boundary conditions at the sheath-

helix radius r = a:
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(dispersion relation derived 

by equivalent circuit analysis)

(dispersion relation derived by 

electromagnetic field analysis)

The two approaches of analysis yield one and the same 

dispersion relation of a helical structure!

(derived earlier)
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Equivalent circuit analysis

Ohm’s circuital lawOhm’s electromagnetic law

Electromagnetic boundary condition at the 

interface between two conducting media

Electromagnetic field analysis

Dispersion relation of a helix in free space

Law of parallel resistances

Poynting vector Joule’s circuit loss

Waveguide dispersion relationWaveguide dispersion relation

Dispersion relation of a helix in free space
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Concluding Remarks

The circuit concepts can be developed from the corresponding field concepts.

Thus, Ohm’s law in circuit theory expressed in terms of voltage, current and

resistance can be derived from Ohm’s law in electromagnetic theory expressed

in terms of current density, electric field and material conductivity. Joule’s power

loss expression in circuit theory in terms of circuit current and circuit resistance

can be derived from Poynting theorem of electromagnetic theory. Further, one of

the electromagnetic boundary conditions at the interface between two media

can be used to easily appreciate the law of parallel resistances of circuit theory.

On the same note, the behavior of interaction structures of vacuum electron

devices can be described by either of the field and circuit analytical concepts.

These two theoretical concepts yield one and the same dispersion relation of a

hollow-pipe waveguide which can be made to support either a TE or a TM fast

waveguide-mode. Similarly, these two concepts yield one and the same

dispersion relation of helix which supports hybrid TE and TM slow waveguide-

modes. The circuit analysis enjoys the simplicity in that it handles at a time half

the number of boundary conditions than the field analysis.

We can find, with the help of circuit analysis, the characteristic impedance of an

interaction structure, which is a parameter of relevance from the standpoint of

the impedance matching of the structure with the RF couplers which couple

power in and out of the structure. On the other hand, We can find, with the help

of electromagnetic field analysis, the interaction impedance of an interaction

structure, which is a parameter of relevance from the standpoint of the device

gain and efficiency.
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