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You cannot teach a man anything; you can
only help him to find it for himself

—Galileo Galilee



Pierce’s Sheath-helix model

Cylindrical sheath of infinitesimal thickness that has infinite and zero conductivity in
the direction of helical winding and perpendicular to this direction, respectively,
replacing the actual helix

At the sheath-helix surface

1. Electric field intensity parallel to the helix winding direction in the region
inside the sheath-helix helix is zero.

2. Electric field intensity parallel to the helix winding direction in the region
outside the sheath-helix helix is zero

3. Magnetic field intensity parallel to the helix winding direction in the
region inside the sheath-helix helix is continuous with that outside

4. Axial electric field intensity (or azimuthal electric field intensity) is
continuous with that outside

At the dielectric-dielectric interface
Axial and azimuthal electric field intensities as well as axial and azimuthal
magnetic field intensities are each continuous

At the metal envelope
Axial and azimuthal electric field intensities are each equal to zero

J. R. Pierce: Traveling-Wave Tubes. D. Van Nostrand (Princeton, 1950)



Helix in Free-Space
(Sheath-Helix Model)

Dispersion relation of a helix in free- — @
space in the sheath-helix model p>> k ” P v,
P Vp <<C
0,
kcoty _ ( 1, (70) Ko(ya)j (slow-wave) = o o=
Y ,(ra)K,(ra) )
k_
/4
1/2
keoty Vo . _(lo(ﬂﬁ)Ko(Vd)j
~ W= S
Y C l,(ra)K,(72)
kcoty ya = kacoty 4




Sensiper’s Tape-Helix Model
Axial harmonic effects due to the axial periodicity of the helix taken into account

Actual helix replaced by a tape of infinitesimal thickness that conducts in all
directions

Zero tangential electric field intensity everywhere on the tape surface
corresponding to the actual current distribution on the tape surface

Tape surface current density assumed to be predominantly along the helix winding
direction, with a defined distribution, presumably caused by an electric field
intensity parallel to the winding direction E;, under narrow-tape approximation

Constant amplitude of surface current density over the tape width with its phase
varying along the centreline of the tape winding as exp — (j4,p@ /(2x)), where £, is

the fundamental axial phase propagation constant, and p is the helix pitch,
according to a typically assumed current distribution

Expected satisfaction of the boundary condition E;, = 0 over the entire tape surface,

for a narrow tape, if the boundary condition is satisfied along the centreline of the
tape surface

Field expressions found using Floquet’s theorem considering the helix periodicity

Relevant field constants and hence E, along the centreline of the tape surface
found in terms of the assumed tape surface current density distribution

E, along the centreline of the tape surface set equal to zero (E, = 0) to obtain the
dispersion relation in the tape-helix model 5



Excerpt from Samuel Sensiper: Electromagnetic wave propagation on helical
conductors. Technical Report No. 194; May 16, 1951. Research Laboratory of
Electronics, Institute of Technology, Cambridge, Massachusetts (Sc D Thesis);
and Proc. IRE 42 (1955) 144-161.

“If the tape is taken to be very narrow, that is, with 6 small compared with a, p, and

A, it seems quite reasonable to assume that essentially all of the current flows only
along the tape.”

........ “If the point of view is taken that the fields are produced by the currents
which flow, with the tape narrow and current flowing primarily in the direction of the
tape, the specific distribution of current across the tape will affect only to a small
degree the fields in the near neighborhood of the wire and to a much less degree
the fields on adjacent and faraway turns. Thus, if some reasonable assumptions are
made concerning this current distribution, it is to be expected that only small errors
will be made in the field expressions”.



........ “If an inexact current distribution on the tape is assumed, the tangential
electric field can no longer be made zero everywhere on the tape, and this
boundary conditions can be only approximately satisfied. This may be done in
several ways. One could, for example, require the average value, or better the
mean square value, of the tangential electric field on the tape to be a minimum,
with the propagation constant, which gives this minimum as the solution.
However, another procedure is used here which leads to a somewhat simpler
determinantal equation for calculative purposes and which appears to be a
quite adequate approximation. In this it is required that E, be zero along the
centerline of the tape; in other words, one of the boundary conditions is
matched exactly along a line. (As noted before), for a narrow tape the dominant
current density is K, and, loosely speaking, it is E, which forces the current to
flow along the tape. Thus, if the most important boundary condition is satisfied
on a line, one may hope to obtain a reasonable good approximation to the
exact case where the condition must be satisfied over a surface”.................
“in the neighborhood of this line which is almost a narrow tape.”

— Samuel Sensiper: Electromagnetic wave propagation on helical conductors.
Technical Report No. 194; May 16, 1951. Research Laboratory of Electronics,
Institute of Technology, Cambridge, Massachusetts (Sc D Thesis); and Proc.
IRE 42 (1955) 144-161



Field expressions for a helix in free-space
obtained in the sheath-helix model

E, = Al, (1) + BK, ()
H, :Clo(?’r)"‘ DKO(W)

E, =12 1, () - DK, (1))
Y

Jwg,

H, =

[Al(#) - BK, ()]

E, - j7ﬂ[AI1(7r) —BK, (71)]

H, =j7'B[C|1(7f)— DK, (47)]




Field expressions

E21:A1|0(7/r)+BlKo(7r) KO(O)—)OO E22:A2|0(7r)+BZKO(7r)
H,=Cl,(»)+DK,(») |,(0) > H22=C2-|0(7I’)—I—D2K0(7I’)
i B =0 _ Jou, _
E :_M[C () - D,K, ()] ! - E,, = —7/ [C,1,(r) — D,K,(yr)]
o1 y 11 1™ A =0 |
' D =0 _ Jwg, _
H,, = Jwe, [AL(r) - BK,(1)] Cl 0 Hy, [A1,(r) - B,K, ()]
, =
E,=Al,(n) E.. =B, Ko (1) The subscript 1 refers to the
H,, =C,I,(r) H,, = D,K,(») quantities inside the helix.

lo _ ja),uo The subscript 2 refers to the
E, = —MClll(yr) By, = v D,K, () quantities outside the helix.
/4

jo — Jwsg,

“0 A1|1(7f) H<92 - 82K1(7r)
Y

A,C.,B,,D,: Four non-zero field constants

Hm:



Expressions for Fields Comprised of Space-Harmonics

exp | (ot — fz) = exp( Jot —yz) =exp( Jot —12)

1/ .
2 2 2 2 (F:J?/)
(@ Jlo 18 9 0 j(Ez,Hz)=0 |

+ + — UE— RF quantities vary as
or’ ror r?op* or* ot ) ’

2 :_7/2 =,32

o° 10 1 6° 5
+ EH )+————I(E H )+I"(E H, )=0
R R S NN ICHN

Solution:

E,=A, 1, (yr)exp(=)f2)exp (Jmo)

H,=C, I, (y1)exp(=)S2)exp (Jmo)

10



E,. =[A.l.()exp(-jL2)exp (jmb) The subscript 1 refers to the

guantities inside the helix.

H,, =[C,.I.(y")]exp(-jB2)exp (jméb) The subscript 2 refers to the

guantities outside the helix.

Em{;ﬂf Ao =125, m(yr) oXp(-ifz)exp(jmo)

Hm{j“;‘% Amlzn(yr)—;‘ﬂ . m(m exp(—j/f2)exp( jmo)

E,, =[B,,K,,(y"]lexp(=jB2exp (jmo)

By, = ;ﬁ By K (1) — yﬂo Dy Ko O )}exp(—JﬂZ)exp(jmé’)

HzZ = 2m m(j/r)]exp(—JﬂZ)eXp (Jme)

H,s = {’“;‘90 B, K. (o )—;‘—ﬂ " m(yr)}exp( iBz)exp( jmo)

11



Space periodicity of the helix

The helix coincides with itself if i) either it is translated through an axial period p
(axial translation) or ii) it is translated through an arbitrary axial distance 2’ < p
and then rotated through an angle 2nz'/p (or, alternatively, it is rotated through an

arbitrary angle <2z and then translated through an axial distance p#/2=n
(differential skew transformation).

Functional dependence 5
: : T
f(z) =exp—JB,z=exp- (15 +?n)z

g2
=(exp—jﬂoz)exp(—j%””)z A=t

i . 27N ]
f — (exp— _isn _ _
(z+p)=(exp— JB,(z+ p)exp(—] > Nz+p) — exp—j2r=1

= T(z)exp— S, pexp— j27 = T(2)exp— )5, p
f(z+p) differs from f(z) by a constant phase factor and hence satisfies Floquet’s theorem

We can introduce this functional dependence in the field
expressions to account for the axial periodicity of the structure. 12



E,. =[A.l.()exp(-jL2)exp (jmb) The subscript 1 refers to the

guantities inside the helix.
(recalled)

Fields considering space harmonics

zl(r 9 Z) Z ZAimnIm(ynr)eXp(_Jﬂ Z)eXp (ng)

M=—00 N=—00

= Z Zﬂm,nlm(ynr)eXp(—jZﬂnz/ p)(exp— jB,2)exp (jmo)

M=-00 N=—00

Vn :(ﬁnz_kz)l/2
ﬁn :ﬂ0+27m/ p

91(r 0, Z) —

Am ol m(ynr) Crnnln(ZaDIexp(=j27nz/ p)(exp— jB,z)exp (jmo)

M=—00 N=—00 n

13



E,(r0,2)=2 > Analn(r.r)exp(=j2mz/ p)exp— if,z)exp (jm) (rewritten)

M=—00 N=—00

For the helix translated through an arbitrary axial distance z' < p and then
rotated through an angle 2nz'/p

<&—-

\
E, (r.0+2722' I p,z2+7')= Skew transformation

Y. 2. Analn(ar)exp(=j2anz/ plexp(-j2mnz'/ p)
T x(ep- jB2)(exp— jAe2)exp (Jmd)exp (jm27z'/ p)

=(exp— jB,2)exp—j2z(m—-n)z'/ p
¢S S Al (rar)exp(=j2mz/ p)(exp— jf,2)exp (jmé)]

M=—00 N=—00

E, (r,0+2722' [ p,z+2")=(exp— jf,2)

¢S S (Al (rar)exp(=i2mz/ p)(exp— if,2)exp (jmé)]

= (eXp_ jﬁoz’)Ezl(r’ o, Z)

Thus, Floquet’s theorem is obeyed through the invariance of skew transformation.
14




E,(rn6.2=Y 3 Ayl (7.Nexp(j2mz/ p)exp— jf,2)exp (jmé)

M=—00 N=—00

(rewritten)

Em(r191 Z):

> 3 L Al (ar) 10,0, 1, (- 22 )0~ i 2)exp (m)

M=—o0 N=—0 / n n

(rewritten)

Putting m = n, to satisfy the invariance of skew transformation corresponding to
f(z+p) differing from f(z) by a constant phase factor

E,(r0.2=3 A1, (7. )exp(-j2mz/ p)(exp— if,2)exp (jn6)

N=—00

Eal(r 0, Z) =

Amln(ynr)

N=—00 n

Cinla (7aD)lexp(=j27mz / p)(exp— jfyz)exp (In6)

15



Electric field parallel to the winding direction

E-Ed +E,3,+E3

E// — E'é// — Er_'r ay,+ Eeée '5// + Ezéz -a

l

E, = (E)(0)+(E,)(cosy) +(E,)(sin y)

!

E,=E,cosy +E,siny

|




E, =E,cosy +E,siny (rewritten)

< Eun(r.0, Z):

Amln(ynr)

N=—o0 n

Cinla (7aD)lexp(=j27mz / p)(exp— jfyz)exp (In6)

< Eu(r6, Z)=iﬁan|n(7nr)exp(—12ﬂn2/ p)(exp— 5,2)exp (Jn6)

E,,(a)= Z K nfl” | {r,a}cosy—I {y,a}sin WJ%{ Jeo {7na}COS!//J 1,}

exp(—Jp,z)exp— In((27z/ p) - 6)

(to be recalled later)

17



Sensiper’s Tape-Helix Model
Axial harmonic effects due to the axial periodicity of the helix taken into account

Actual helix replaced by a tape of infinitesimal thickness that conducts in all
directions

Zero tangential electric field intensity everywhere on the tape surface
corresponding to the actual current distribution on the tape surface

Tape surface current density assumed to be predominantly along the helix winding
direction, with a defined distribution, presumably caused by an electric field

intensity parallel to the winding direction E;, under narrow-tape approximation

Constant amplitude of surface current density over the tape width with its phase
varying along the centreline of the tape winding as exp — (j5,p€ /(2x)), where S, is

the fundamental axial phase propagation constant, and p is the helix pitch,
according to a typically assumed current distribution

Expected satisfaction of the boundary condition E;, = 0 over the entire tape surface,
for a narrow tape, if the boundary condition is satisfied along the centreline of the
tape surface

Field expressions found using Floquet’s theorem considering the helix periodicity

Relevant field constants and hence E, along the centreline of the tape surface
found in terms of the assumed tape surface current density distribution

E, along the centreline of the tape surface set equal to zero (E, = 0) to obtain the
dispersion relation in the tape-helix model 18



E ,(a)= Z H ng” | {r.aycosy—I {r,a}sin w}%{l “o ) {7na}008w] m}

exp(—Jp,z)exp— In((27z/ p) - 6)

(recalled)
A.,C,  Field constants

We need to evaluate the field constants A;, and C,, in terms of helix
currents with the help of the boundary conditions.

19



Boundary conditions at the mean helix radius ¢ _ 5

é:nx(E»Z_E»l):O

|

6_ir ><[(Erz - Erl)ér + (Eaz - EHl)é:H + (E22 - Ezl)éz] =0

’

(Ep,—En)a, +(E,—E,,)d, =0

Haz - H91 — ‘]sz
H 17 sz = ‘]59

z

Subscript 1:
Inside the helix winding
radius

Subscript 2:
outside the helix
winding radius

20



E,=E, Interpreting for H,-H,=J,
< the nt harmonic ——»

Ep = Ep, component H,—-H,,=Jy
Ezl,n — EzZ,n Boundary H«92,n o H@l,n — ‘]sz,n
<— conditions
Epin = Eoan atr = a Hy—H;=Jen
n _
A = YKo (7,3) Jsn=(NB 1 yaa)dgo, < The hat A represents the peak value.
n

jogy, 1, (7,9K[(7,2)-K, (7.2l (7,2) Substituting field expressions into
' & <— boundary conditions and solving the
Ko (7o), (7,@)dgs resulting equations in field constants

L ()KL (ra)-K, (7)1 (7,)
j/ \ Jszn — ‘Js//,n Sin l//

Jgn = Jsin COSY
In(yna) Kr’1 (yna)_Kn (]/na)lr’]()/na) :1/ 7/na
sn SNy —(nB/ VnZa)js//,n cosy]

‘aK _(7.a) 2
A =18 (7:3) 5
Jwe,

Cln:_j/naqu (]/na)jS//,nCOSW 01



E ,(a)= i H_ r;ﬁ | {r.ajcosy + 1 {y,a}sin w]ﬁan{ I I'{r,a}cos ijln }X

N=—0 n n

exp(—Jp,z)exp— In((27z/ p) - 6)

2
y.aK, (7,
Al,n - =

, a) [js//,n siny —(ng, /7/nza) js//,n cosy/]
g,

Cln: _7naKr'1 (Q/na)‘j\s//,ncoS 4

N

We can find Jg,, interms of an assumed current distribution over the tape width.

Let us assume that the surface current density through the tape is parallel to the
tape winding direction and that its amplitude is constant at a value J, and that
its phase varies along the winding direction according to the phase factor
exp(j4,z), where z corresponds to a point moving along the centre-line of the
tape. The value of z, corresponding to a point on the centre line of the tape
characterized by an azimuthal angle 6, is given z = pé2xz. Thus, over a period
of the structure, that is, the helix pitch p, one may write:

Joy =Jexp(—]5,2)
=Jexp(—JB,pl/2x) [pOl2n—-5612<2<pbl2x+5/2]

=0 [pO/27x+612<2<pb/2x-512+ p] 22



Jg =J exp(—]52)
=Jexp(—JB,p0/2x) [pOl2n—-612<2<pb8/2x+5/2]
=0 [pO/27n+012<2< pBI27r—5612+ p]

(tape current distribution assumed)

Joy= 2 dn= > Jg.ex0(=B2) exp(— in(2zz/ p) - 6)

N=—00 N=—00

For the assumed current distribution, the following Fourier component is obtained:

_.,SIn(B.012)
=356 0

23



Joy= > Jo,exp(=iBz)exp(— jn(27z 1 p) - 6)

N=—0o0

Multiplying both sides by exp( J5,z)exp jm(27z/ p—6)dz and integrating

pé/27+612 peI27-512+p
[ 3., ex0(is2)exp jm2mz/ p-0)dz+ [ J,,exp(jB,z)exp jm(27z/ p) - O)dz
pé/27-512 pOI27+512

pO/27-5/2+p
= jJS,,,n exp j(m—n)(27z/ p—-6)dz

p@l27-512

I =J exp(—]52)
=Jexp(—JpB,p012x) [pOl2n—-612<2<pbBl2n+5/2]
=0 [pO/27+0612<2<pB@l2n—-0612+ p]

(assumed tape current distribution)

J po12x+612
Jexp(—]B,pr/2+m)6 jexp J(B, +22m/ p)zdz
poI27-512
pOI27-512+p pOI27—512+p o
= [Jyndz+ [ X I exp[-i(m-n)dlexp j(m—n)(2mz/ p)dz
p@/27z—5612 (n=m) p@127—5612 (n=m) NFM=—0

24



IBn :ﬁ0+27m/p
l L. =, +2mmz/ p

B.pl2r = p,pl27r+mz

pO/27+612

Jexp(—jB,pr/2+m)d jexp J(B, +22m/ p)zdz
pél27-612
pO12x—o512+p pOl2x—612+p
= jJs//de+ Z ‘]s//m jexp[—j(m—n)@]exp j(m_n)(Zﬂ-Z/ p)dZ
po/2z—-512 (n=m) n#m= 2=p0127-512
l (rewritten)
pO/27+612
Jexp(~jB,p0/2z  [exp j(B,2dz
pOI27-512
) po/27-612+p pO/27-612+p
S JOz Y G [e0l-im-n)dlex j(m-n) 2w/ p)dz
2=p0127-512 N#M=-c0 z=p0127-512

25



pO/27+612

Jexp(—]B,.pl/2r jexp J(B,zdz

pel27-512
pO12x—512+p 0 p@l2z—612+p
=Jyn  [dz + X Iy [ewl-i(m-n)6lexp j(m—n)(2zz/ p)dz
2=p0127-512 N#M=—c0 z=p0127-512

(rewritten)

|

J eXp(—Jﬂmp@/Zﬂ-exp( Jﬂmp9/272')[eXp( Jﬂmé‘/z)_exp( Jﬂm5/2)]

15,

. ~  exp[—J(m-n)@ .
50t X o Jp(En j‘nw,; [exp{ j(m—n)(27/ p)(pO/ 27— 512)}

x[exp j(m—n)2z —1]

26



exp(Jf,012) —exp(J5,0 2)]
15,

A A eX m
50t X o J"(En“n)m’ [exp{ j(m—n)(27/ p)(pO/ 27— 512)}

x[exp j(m—n)2z —1]

(rewritten)

\
2jsin .ol12, -
J[ J Jﬁﬂm 1=9gmP \

2sin ﬂmé‘/z] eXp( Jﬁm5/2) _exp( J/Bm5/2) — ZJSIn( /Bm5/2)

J

s//m — ‘J[ ﬁm p

sin( 5,0/2)
s//m ‘J( ,85/2 )( )

l

sin( 5.0/2)
s//n ‘J( ﬁ5/2 )( )

27



E ,(a)= Z H nﬁ =1 {r.ajcosy + 1 {»,a}sin ‘//J'A&n{ “o | {7na}COSw] @

N=—o00 n

Set at the centre-line of
the tape at z = pl2r

El,//(a) =0

Z JSIﬂ W‘Js//n [( IB

E ,(a)=

N=—o0 a)go

A

Cln:

exp( jfz)exp— jn((2mz1 p) - )
!

~7qaaK, (7,2) iJ

sun SNy — (g, /?/nza) js//,n cosy]
Jws, -

_7/naKn (j/na)‘] s//,nCOS l//

COtW _7/na)2|n(7na)Kn(7/na)

+k, a’cot’yd ] (7na)K,2 (7,@)lexp(—jB,z)exp— jn((27z/ p)-0) =0

28




J
_ g dsin ‘”S””[( N/:2 2 coty - 7, (K, (778)

N=—c0 a)g()

+k, a*cot’ wn(yna)K,:(yna)] exp(—jB,z)exp— jn((27z/ p)-6) =0

T T (rewritten)

Do b sin( 5.0/2)
2= 5o Jn= IS0 0

I 5y )en(-if, 5 )Z[( PR oty - 1,201, (7,K, (7,8)

&od N=—o0
2.2 112 14 , sin( 5.0/2)
+k0 a COt Wln(j/na)Kn()/na)][ ﬂ5/2 ]_
> (P coty ~ 7,21, (720K, (7,2) = (52K
2 o o, , sin( g.01/2) L.=p,+2mlp
+ky"a”cot”yl, (,2) K, (r,a)ll 5502 1=0

(dispersion relation in the tape-helix model) 29



Dispersion plot for a helix in free-space obtained by tape-helix model

\\\\

DDDDDDD

\

\
10

0.2

n = 0-solution for =10%and zdp = 0.1



Forbidden regions

Permitted solution for real 7, =[(5,8)" — (ka)’1"?

i S.=6,+2m/p
(8,8)° > (ka)* |
| p.a=p,a+2mnl p=pa+n(2zal p)
fha>tka B.a= pa+ncoty
|
Pi@ +Nn>+
coty coty

Boundaries between the allowed and forbidden regions are straight lines given by

ﬁ:i( ﬂoa

coty coty

+n)

31



Boundaries between the allowed and forbidden regions are straight lines given by

Hatched region shows the forbidden region, and the boundaries
between the allowed (non-hatched) and forbidden regions are

shown as straight lines of positive and negative unity slopes (1),
for different values of n (=0, 1, -1, 2, -2, etc.).

32



Dispersion plot for a helix with dielectric wedge bar supports in a metal

envelope
0175
L
+
0165
0155
| ]
i ] 8
f(GHz)

¢ =20° w =100 N=3,a=1.0mm,

b/a=2, £=5.1 (APBN)

12

Q.8 -

016

Vit

0.4

0Aa2

=== Sheath helix

¢ =200 N=3,a=0.75mm, b =1.6 mm,

0=0.4mm, &=5.1(APBN)



Heuristic tape-helix model

Makes the analysis leading to the dispersion relation of a loaded helical slow-wave

structure rather simple!

Dispersion relation of an unloaded helix in free-space in the tape-helix model:

S (M, (7,8) + Nmma)(gmfz’ 2] -0

—00

5 =tape width, 7. = (8.7 —k,))"?, k, = @ (14,6,)"

W

Vm

M (7m) = (

COtW _7/ma)2 Im(yma)Km(yma)

N,y {7} = ko a2 cot w 1/ {r.alK! {r.at

w = helix pitch angle
a=mean helix radius

S. Sensiper: Proc. IRE 43 (1955) 149-161

\

Prime indicates the derivative with
respect to argument.
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Dispersion relation of a loaded helix in the sheath-helix model:

1/2

ky coty :(_ lo(762) Ko(yoa)] D, (7.2)

Yo 15 (702) Ko (702) o
U

M, {7/oa}D02 {VOa}+ N, {7/03} =0

Combinational approach

Combine the dispersion relation of an unloaded helix in free-space in
the tape-helix model with the dispersion relation of a loaded helix in the
sheath-helix model

A. K. Sinha and others: IEE Proceedings-H: Microwave,
Antenna & Propagation 139 (1992), 347-350

35



Dispersion relation of an unloaded helix in free-space in the tape-helix model:

l

> (M (7, + Nm<7ma>(5"2§f2’ 2] -0

Dispersion relation of a loaded helix in the sheath-helix model:

ﬂ
M, (7o) D02(7/oa) + Ny (7a) =0

Heuristic combinational approach:

Dispersion relation of a loaded helix in the tape-helix model

l

i(l\/l (y.a)D, (y..a)+ Nm(yma)[Sirjén%/& 2/ 2) ~0

—00



Dispersion relation of a loaded helix in the tape-helix model

2(“/' (y.a)D, (y.a)+ Nm(y’“a)[Sirjég/& 2/ 2) ~0

D, (7,a) Is obtained by replacing y,a by y_a inthe expression for D,(y,a)

The above dispersion relation of a loaded helix obtained by the
heuristic tape-helix model exactly agrees with the dispersion relation

obtained by the analysis of the loaded helix by the rigorous tape-helix
model!

A. K. Sinha and others: IEE Proceedings-H: Microwave,
Antenna & Propagation 139 (1992), 347-350
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Thank you!
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