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You cannot teach a man anything; you can 

only help him to find it for himself

 Galileo Galilee 
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Pierce’s Sheath-helix model

Cylindrical sheath of infinitesimal thickness that has infinite and zero conductivity in

the direction of helical winding and perpendicular to this direction, respectively,

replacing the actual helix

At the sheath-helix surface

1. Electric field intensity parallel to the helix winding direction in the region

inside the sheath-helix helix is zero.

2. Electric field intensity parallel to the helix winding direction in the region

outside the sheath-helix helix is zero

3. Magnetic field intensity parallel to the helix winding direction in the

region inside the sheath-helix helix is continuous with that outside

4. Axial electric field intensity (or azimuthal electric field intensity) is

continuous with that outside

At the dielectric-dielectric interface

Axial and azimuthal electric field intensities as well as axial and azimuthal

magnetic field intensities are each continuous

At the metal envelope

Axial and azimuthal electric field intensities are each equal to zero

J. R. Pierce: Traveling-Wave Tubes. D. Van Nostrand (Princeton, 1950)
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Dispersion relation of a helix in free-

space in the sheath-helix model

Helix in Free-Space

(Sheath-Helix Model)
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Sensiper’s Tape-Helix Model

Axial harmonic effects due to the axial periodicity of the helix taken into account

Actual helix replaced by a tape of infinitesimal thickness that conducts in all

directions

Zero tangential electric field intensity everywhere on the tape surface

corresponding to the actual current distribution on the tape surface

Tape surface current density assumed to be predominantly along the helix winding

direction, with a defined distribution, presumably caused by an electric field

intensity parallel to the winding direction E//, under narrow-tape approximation

Constant amplitude of surface current density over the tape width with its phase

varying along the centreline of the tape winding as exp – (j0p /(2)), where 0 is

the fundamental axial phase propagation constant, and p is the helix pitch,

according to a typically assumed current distribution

Expected satisfaction of the boundary condition E// = 0 over the entire tape surface,

for a narrow tape, if the boundary condition is satisfied along the centreline of the

tape surface

Field expressions found using Floquet’s theorem considering the helix periodicity

Relevant field constants and hence E// along the centreline of the tape surface

found in terms of the assumed tape surface current density distribution

E// along the centreline of the tape surface set equal to zero (E// = 0) to obtain the

dispersion relation in the tape-helix model 5



“If the tape is taken to be very narrow, that is, with  small compared with a, p, and 

, it seems quite reasonable to assume that essentially all of the current flows only 

along the tape.”

…….. “If the point of view is taken that the fields are produced by the currents

which flow, with the tape narrow and current flowing primarily in the direction of the

tape, the specific distribution of current across the tape will affect only to a small

degree the fields in the near neighborhood of the wire and to a much less degree

the fields on adjacent and faraway turns. Thus, if some reasonable assumptions are

made concerning this current distribution, it is to be expected that only small errors

will be made in the field expressions”.

6

Excerpt from Samuel Sensiper: Electromagnetic wave propagation on helical

conductors. Technical Report No. 194; May 16, 1951. Research Laboratory of

Electronics, Institute of Technology, Cambridge, Massachusetts (Sc D Thesis);

and Proc. IRE 42 (1955) 144-161.
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…….. “If an inexact current distribution on the tape is assumed, the tangential

electric field can no longer be made zero everywhere on the tape, and this

boundary conditions can be only approximately satisfied. This may be done in

several ways. One could, for example, require the average value, or better the

mean square value, of the tangential electric field on the tape to be a minimum,

with the propagation constant, which gives this minimum as the solution.

However, another procedure is used here which leads to a somewhat simpler

determinantal equation for calculative purposes and which appears to be a

quite adequate approximation. In this it is required that E// be zero along the

centerline of the tape; in other words, one of the boundary conditions is

matched exactly along a line. (As noted before), for a narrow tape the dominant

current density is K//, and, loosely speaking, it is E// which forces the current to

flow along the tape. Thus, if the most important boundary condition is satisfied

on a line, one may hope to obtain a reasonable good approximation to the

exact case where the condition must be satisfied over a surface”……………..

“in the neighborhood of this line which is almost a narrow tape.”

 Samuel Sensiper: Electromagnetic wave propagation on helical conductors.

Technical Report No. 194; May 16, 1951. Research Laboratory of Electronics,

Institute of Technology, Cambridge, Massachusetts (Sc D Thesis); and Proc.

IRE 42 (1955) 144-161
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obtained in the sheath-helix model



Field expressions

Four non-zero field constants
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The subscript 1 refers to the 

quantities inside the helix.

The subscript 2 refers to the 

quantities outside the helix.



Expressions for Fields Comprised of Space-Harmonics
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The subscript 1 refers to the 

quantities inside the helix.

The subscript 2 refers to the 

quantities outside the helix.



Space periodicity of the helix

The helix coincides with itself if i) either it is translated through an axial period p

(axial translation) or ii) it is translated through an arbitrary axial distance z < p

and then rotated through an angle 2z/p (or, alternatively, it is rotated through an

arbitrary angle <2 and then translated through an axial distance p/2
(differential skew transformation).

Functional dependence 

f(z+p) differs from f(z) by a constant phase factor and hence satisfies Floquet’s theorem

We can introduce this functional dependence in the field 

expressions to account for the axial periodicity of the structure. 12
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Fields considering space harmonics
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Thus, Floquet’s theorem is obeyed through the invariance of skew transformation.
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For the helix translated through an arbitrary axial distance z < p and then 

rotated through an angle 2z/p

Skew transformation



Putting m = n, to satisfy the invariance of skew transformation corresponding to  

f(z+p) differing from f(z) by a constant phase factor
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Electric field parallel to the winding direction
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Sensiper’s Tape-Helix Model

Axial harmonic effects due to the axial periodicity of the helix taken into account

Actual helix replaced by a tape of infinitesimal thickness that conducts in all

directions

Zero tangential electric field intensity everywhere on the tape surface

corresponding to the actual current distribution on the tape surface

Tape surface current density assumed to be predominantly along the helix winding

direction, with a defined distribution, presumably caused by an electric field

intensity parallel to the winding direction E//, under narrow-tape approximation

Constant amplitude of surface current density over the tape width with its phase

varying along the centreline of the tape winding as exp – (j0p /(2)), where 0 is

the fundamental axial phase propagation constant, and p is the helix pitch,

according to a typically assumed current distribution

Expected satisfaction of the boundary condition E// = 0 over the entire tape surface,

for a narrow tape, if the boundary condition is satisfied along the centreline of the

tape surface

Field expressions found using Floquet’s theorem considering the helix periodicity

Relevant field constants and hence E// along the centreline of the tape surface

found in terms of the assumed tape surface current density distribution

E// along the centreline of the tape surface set equal to zero (E// = 0) to obtain the

dispersion relation in the tape-helix model 18



We need to evaluate the field constants A1n and C1n in terms of helix 

currents with the help of the boundary conditions.
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Boundary conditions at the mean helix radius

Subscript 1:

Inside the helix winding 

radius

Subscript 2:

outside the helix 

winding radius
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the nth harmonic 
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Boundary 

conditions 

at r = a

Substituting field expressions into 

boundary conditions and solving the 

resulting equations in field constants 

The hat  represents the peak value.
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in terms of an assumed current distribution over the tape width.  

Let us assume that the surface current density through the tape is parallel to the

tape winding direction and that its amplitude is constant at a value J// and that

its phase varies along the winding direction according to the phase factor

exp(j0z), where z corresponds to a point moving along the centre-line of the

tape. The value of z, corresponding to a point on the centre line of the tape

characterized by an azimuthal angle , is given z = p/2. Thus, over a period

of the structure, that is, the helix pitch p, one may write:



(tape current distribution assumed)

For the assumed current distribution, the following Fourier component is obtained:  

23

]2/2/2/2/[0

]2/2/2/2/[)2/exp(

)exp(

0

0//

ppzp

pzppjJ

zjJJ s























n

s

n

nss pzjnzjJJJ ))/2(exp()exp(ˆ
0//,//,// n

))(
2/

)2/sin(
(ˆ

//,
p

JJ
n

n
ns










Multiplying both sides by and integrating
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Set at the centre-line of 

the tape at z = p/2:
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Dispersion plot for a helix in free-space obtained by tape-helix model

n = 0-solution for  =100 and /p = 0.1

30



Forbidden regions

Permitted solution for real

Boundaries between the allowed and forbidden regions are straight lines given by
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Boundaries between the allowed and forbidden regions are straight lines given by

Hatched region shows the forbidden region, and the boundaries

between the allowed (non-hatched) and forbidden regions are

shown as straight lines of positive and negative unity slopes (1),

for different values of n ( = 0, 1, -1, 2, -2, etc.).
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Dispersion plot for a helix with dielectric wedge bar supports in a metal 

envelope

 = 200, ,  ,= 100, N = 3, a = 1.0 mm,  

b/a=2, r=5.1 (APBN)

 = 200, N = 3, a = 0.75 mm, b = 1.6 mm,  

 = 0.4 mm, r = 5.1 (APBN)
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Heuristic tape-helix model

Makes the analysis leading to the dispersion relation of a loaded helical slow-wave 

structure rather simple!

Dispersion relation of an unloaded helix in free-space in the tape-helix model:

S. Sensiper: Proc. IRE 43 (1955) 149-161
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Prime indicates the derivative with 

respect to argument.
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Dispersion relation of a loaded helix in the sheath-helix model:



Combinational approach

Combine the dispersion relation of an unloaded helix in free-space in 

the tape-helix model with the dispersion relation of a loaded helix in the 

sheath-helix model

A. K. Sinha and others: IEE Proceedings-H: Microwave, 

Antenna & Propagation 139 (1992), 347-350 
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Dispersion relation of an unloaded helix in free-space in the tape-helix model:

Dispersion relation of a loaded helix in the sheath-helix model:

Heuristic combinational approach:

Dispersion relation of a loaded helix in the tape-helix model
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The above dispersion relation of a loaded helix obtained by the

heuristic tape-helix model exactly agrees with the dispersion relation

obtained by the analysis of the loaded helix by the rigorous tape-helix

model!

Dispersion relation of a loaded helix in the tape-helix model

A. K. Sinha and others: IEE Proceedings-H: Microwave, 

Antenna & Propagation 139 (1992), 347-350 

0
2/

2/sin(
)()()((

2













 




m

m
mmmmmm aNaDaM
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Thank you!
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