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Principal parts of a TWT:

 Electron gun: electron beam formation 

 Focusing structure: electron beam confinement

 Collector: collection of spent electron beam

Slow-wave structure (SWS): excitation of slow RF wave for  

interaction with the electron beam 

 Attenuator: suppression of oscillation

 RF input and output couplers
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Scope of the present lecture

Classification of the TWT in the family of microwave tubes

Axial electron bunching and near-synchronism condition

Space-charge waves

Coupling between the circuit and space-charge waves

Pierce’s theory for the growth parameter and gain of a TWT  
considering the coupling between the electron beam and the  

slow-wave structure

Extension of Pierce's theory to estimate of hot attenuation

Extension of Pierce's theory to arrive at Johnson’s start-
oscillation condition
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Identification of the TWT in the family of microwave tubes

 O type (TPO: tubes à propagation des ondes)

 Slow-wave type 

 Axial bunching type 

 Axial beam kinetic energy conversion type 

 Distributed interaction type 

 Growing-wave type 

 Cerenkov radiation type
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TWT is a Cerenkov radiation type of device

DC electron beam velocity is made close to but slightly greater than

the phase velocity of the RF wave supported by the structure (near

synchronization condition).

(1) This ensures the bunch of electrons in the beam to remain in the

decelerating RF phase of the circuit (slow-wave structure) on the

average transferring their kinetic energy to RF waves.

(2) This also makes the slow space-charge wave on the electron

beam to couple to RF waves making on the average the beam kinetic

power density to be negative and the electromagnetic power to be

positive corresponding to the transfer of beam kinetic power to

electromagnetic power of RF waves (Chu’s kinetic power density

concept).

5



Space-charge waves

Two forward (Hahn and Ramo) space-charge waves

Slow space-charge wave : vp < v0

Fast space-charge wave : vp > v0

One-dimensional small-signal analysis

A neutralizing presence of positive ions assumed



DC beam velocity = constant beyond a narrow high frequency modulating gap at

z = 0

Formulation of a differential equation in perturbed part of volume charge density and

its solution for propagation constant of space-charge waves

 Current density equation  Continuity equation

 Force equation  Poisson’s equation
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(Current density equation)

(Continuity equation)

(Force/acceleration 

equation)

(Poisson’s equation)

Space-charge waves

vJ 

0

1










z

Es

ss EE
m

e

dt

dv
1

011 









tz

J 















10

10

10

vvv

JJJ






 E


.

t
J







.

vJ




7



(continuity equation)

(current density equation)(one-dimensional)

(small-signal approximation)
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Force equation
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RF quantities vary as 

Dispersion relation of Hahn and 

Ramo space-charge waves 
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The upper sign     Fast space-charge wave

The lower sign     Slow space-charge wave

(Hahn and Ramo space-charge waves)
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In a frame of reference which moves with the dc beam velocity v0, 

an observer ‘sees’ a Doppler-shifted frequency  given by 
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Dispersion relation of the beam-wave-coupled system (to be deduced later)
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The operating point of the TWT corresponds to the intersection between the  - 

dispersion plot of the slow space-charge wave and that of a forward circuit wave.  
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Pierce’s theory for the beam-present dispersion relation of a TWT and the 

interpretation thereof for the TWT gain equation G = A + BCN

X
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Y
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Two approaches are used to obtain the two expressions  one being the circuit 

equation and the other being the electronic equation, respectively, to obtain the 

same quantity, namely, the ratio of  the circuit voltage V to the beam current I. 

These two expressions are then equated to obtain the dispersion relation of a TWT.      

(circuit equation)  

(electronic equation)  

YX  (TWT dispersion relation)  
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Effect of the element of a modulated beam at a point on the circuit (transmission

line) is simulated by an infinitesimal current generator at that point.

The current generator ‘sees’ half the characteristic impedance of the

transmission line, being equivalent to two such characteristic impedances in

parallel, corresponding to two halves of the supposedly matched line. Such an

infinitesimal generator sends two circuit waves in opposite directions, one to the

left and one to the right such that the amplitudes of the circuit electric field

intensity associated with these waves are equal.

z = distance from the input end of the line of a point P on the line where to find

the electric field.

x = distance from the input end of the line of an infinitesimal current generator

GL to the left of the point P sending the circuit wave to the right and GR to the

right of the point P sending the circuit wave to the left

Circuit equation
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RdE Circuit field amplitude of the wave traveling to the right due to 

an infinitesimal current generator GL to the left of the point P

LdE Circuit field amplitude of the wave traveling to the right due to 

an infinitesimal current generator GR to the right of the point P

iE Circuit field amplitude inputted to the line at z = 0
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dP = Increment of circuit power at a point due to a modulated beam element of length dz

dPR = Increments of circuit power due to the wave sent by the infinitesimal current 

generators to the left of the point

dPL = Increments of circuit power due to th wave sent by the infinitesimal current 

generators to the left and to the right of the point

)( 0 

(propagation constants of beam-wave 

coupled and cold systems are equal)   
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Electronic equation
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Electronic motion in the presence of the circuit electric field intensity E

plus the space-charge electric field intensity Es
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Gain equation from the beam-wave coupled dispersion relation of a TWT
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Fourth-degree equation in the propagation constant 

)exp( ztj RF quantities vary as 

In an isolated circuit (slow-wave structure), there is one forward wave and one 

backward wave (1 forward + 1 backward).

On an isolated electron beam, there is one forward space-charge wave and one 

forward space-charge wave (1 forward + 1 forward).

In a beam-wave coupled system, it can be intuitively guessed that there would be

1 forward wave +1 backward wave + 1 forward wave + 1 forward wave                  

= 3 forward wave + 1 backward wave.   
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)exp( ztj RF quantities vary as 

In a beam-wave coupled system, it has been intuitively guessed that there would be 3 

forward-wave + 1 backward-wave solutions to the following dispersion relation:  

Three forward wave solutions:
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Growing-wave component:
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If the structure is perfectly matched, the fourth 

wave is not excited to a significant extent.
39



VJjvjJ ep  0

22

01 ))(( 

V
jv

j
v

pe

e

))((

)(
22

0

1














0

0

1

1

)(

vj

j

J
E

v





Gain equation of a TWT

(recalled)















e

p

v

VE





0

00

2

/

/

V
vj

Jj
J

p

e

22

0

0
1

)( 








(recalled)

40



V
QC

Cv

j
v













20

1 4
1






2

4
1



QC

V
V





V
jv

j
v

pe

e

))((

)(
22

0

1



























e

e

p

ee

j

C
QC

Cj









22

2

4

V
Cv

j
v 





0

1

(rewritten)



V
v


1

41



V
vj

Jj
J

p

e

22

0

0
1

)( 








V
QC

Cv

J
J

)
4

1(
2

222

0

0
1










(recalled)









0

0

/

/

v

v

pp

e





V
jv

Jj
J

pe

e

)))(( 222

0

0
1










,  

, 



















e

e

p

ee

j

C
QC

Cj









22

2

4

V
Cv

J
J 

222

0

0
1





2

4
1



QC

V
V





21


V
J




42



)exp()0()exp()0()exp()0()( 332211 zVzVzVzV 

jyx

zCyjzCxV

zCyjzCxV

zCyjzCxVzV

ee

ee

ee

)1(exp)exp()0(

)1(exp)exp()0(

)1(exp)exp()0()(

333

222

111



























333

222

111

jyx

jyx

jyx







Circuit voltage

 Cj ee 















)(

)(

)(

333

222

111

jyxCj

jyxCj

jyxCj

ee

ee

ee







At a distance z from the input end: 
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Input conditions
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At a distance z from the input end:
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can be solved for )0(3,2,1V 
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Extension of Pierce's theory to estimate hot attenuation

Lossy section is provided with the slow-wave structure to prevent the 

device from oscillation due to imperfect matching

One attenuator section per about 20 dB gain of the device

Estimate of  'hot' attenuation for infinite 'cold' attenuation

Beyond the attenuator 

Circuit voltage = 0  ('Cold' attenuation =  )

RF modulation on the beam, however, remains. 

We assume that the circuit voltage becomes null following the attenuator 

of negligibly small length, though the RF velocity and the RF current 

density sweep through the attenuator without any change:  
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Superscripts 'a' and 'b' represent the 

quantities immediately preceding and 

beyond the attenuator, respectively.
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Superscripts 'a' and 'b' represent

Quantities immediately preceding and beyond the 

attenuator, respectively.

Subscripts 1, 2, 3 refer to 

Three forward waves, respectively.

Attenuator length is negligibly small:
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Taking CN1  0.2 (practical values)

'Hot' attenuation  20 log103/2 = 3.52 dB, though 

'Cold' attenuation =  !
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Extension of Pierce's theory for Johnson's start-oscillation condition

(H. R. Johnson, "Backward-wave oscillators, " Proc. IRE, June 1955, pp. 684-694) 
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K is interpreted as negative (power 

propagating in the negative direction) 

causing a change in the sign in the 

expression (with – K replaced by + K
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That circuit voltage in the presence of loss would have to be less 

at the input (gun) end than in the absence of loss has to be 

interpreted with a change in the sign of d

1))(4( 2  bjdjQC  (recalled) 1))(4( 2  bjdjQC 

Forward-wave mode Backward-wave mode

lCyjlCxQCVV ee )1(exp)exp()
)/1)(/1(

1
)(/41( 11

1312

2

1inout 


 




(recalled)

lCyjlCxQCV

lCyjlCxQCV

lCyjlCxQCVV

ee

ee

ee

)1(exp)exp()
)/1)(/1(

1
)(/41(

)1(exp)exp()
)/1)(/1(

1
)(/41(

)1(exp)exp()
)/1)(/1(

1
)(/41(

11

3221

2

3in

11

2123

2

2in

11

1312

2

1inout

































62

)2(exp
))((

4
)2(exp

))((

4

)2(exp
))((

4

3

2313

2

3
2

1232

2

2

1

3121

2

12
















CN
QC

CN
QC

CN
QC

V

V
e

in

outNj


























































321 ,, 0
in

out

V

V

Oscillation condition

0)2(exp
))((

4
)2(exp

))((

4

)2(exp
))((

4

3

2313

2

3
2

1232

2

2

1

3121

2

1









































































CN
QC

CN
QC

CN
QC

1))(4( 2  bjdjQC 

are the solutions of 
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The parameter QC may be interpreted as

(a parameter independent 

of beam current I0 and of 

relevance to TWT beam-

wave interaction)
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 has to be interpreted as the frequency where the phase velocity of the 

forward-wave mode of the SWS becomes equal to that of the backward-wave 

mode. K has to be taken as the interaction impedance at this frequency. 
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One can find the solution for CN with the help of the following two equations 
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Parameters: 

(ii) 

The solution for CN thus obtained may be interpreted as 

the start-oscillation current I0 in view of the relations: 
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