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Conceptual Development

 Helix in a glass tube

Model for finite helix thickness

 Field and equivalent circuit analyses

Modeling discrete helix supports by continuous dielectric tube(s) vis-à-vis 

azimuthal harmonic effects

 Homogeneous and inhomogeneous loading of the structure due to helix supports

 Anisotropic loading of the structure due to metal envelope with vanes or segments

 Synthesis of helix supports for dispersion controlled structures

 Sheath-helix and tape-helix models (axial harmonic effects)

 Heuristic tape-helix model

 Structure losses due to the finite resistivity of helix material  

 Structure losses due to attenuator coating on dielectric helix-support rods

 Asymmetry of helix supports

 Dispersion control for wide device bandwidths

Multi-dispersion  structure for wide device bandwidths
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D. T. Swift-Hook’s field analysis of a helix closely fitting in a glass envelope, taking into
account the effect of the finite helix thickness, using the sheath-helix model

Swift-Hook’s study was of direct relevance to the first TWT with a glass envelope
developed at CEERI (in the country)

Swift-Hook considered a free-space gap equal to half the helix thickness between the
mean helix radius and the beginning of the dielectric region outside the helix to account
for the finite thickness of the helix

Sinha, Ghosh, Kartikeyan improved the Swift-Hook’s model for the finite helix thickness

[D. T. Swift-Hook, Proc. IRE 105b Suppl. (1958), 747-755]
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Two internal reports of CEERI, Pilani in quick succession: one on Field Analysis and the
other on Equivalent Circuit Analysis of a helix supported by dielectric rods in a metal
envelope under the supervision of Dr. SSS Agarwala

These two analyses gave one and the same dispersion relation of the structure

is the radial propagation constant

is the axial phase propagation constant

is the free-space propagation constant

is a function of structure parameters known as the dielectric 
loading factor.

is the helix pitch angle
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S. F. Paik provided the design formula (dispersion relation) for a helix supported by dielectric
wedge bars in a metal envelope

Heuristic approach: Discrete dielectric wedge bars may be modelled by a continuous dielectric
tube of an effective relative permittivity obtained by considering the relative volume occupied
by the discrete dielectric supports in the structure

Effective relative permittivity of the equivalent continuous dielectric 
tube

Relative permittivity of the discrete dielectric support rods

Cross-sectional area of the dielectric support rods

Cross-sectional area of the region between the helix and the envelope 
(covering the regions both occupied and unoccupied (free-space) by 
the supports) 

A

Sinha, considering azimuthal harmonics due to azimuthally periodic dielectric supports, obtained
by the rigorous field analysis the same dispersion relation as obtained by the heuristic approach

[A. K. Sinha and others J. Appl. Phys. 58 (1985) 3625-3627]
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Swift-Hook suggested, in a personal communication, that one could realize the
effect of continuous dielectric tube claddings surrounding the helix by loading the
helix by discrete dielectric helix-supports of tapered cross-sectional geometry
that could provide the required non-homogeneity for the desired structure
dispersion for wideband TWTs.

This gives the idea of the synthesis of supports for the desired helix dispersion!

Sinha, and later on Ghosh, with foreign collaborators worked on the synthesis of
supports
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Modelling of dielectric helix-support rods deviating from the simple wedge cross-sectional
geometry such as of circular, rectangular, half-moon-shaped, and T-shaped cross sections causing
inhomogeneous helix loading

One can use Sinha’s number-of-dielectric-tube model to study non-homogeneous helix loading due
to dielectric helix-support rods deviating from the simple wedge cross-sectional geometry

Effective relative permittivity values of the equivalent dielectric tube regions into which the
discrete supports can be smoothed out in the model can be found from geometrical considerations

Dielectric helix-supports such as of half-moon-shaped and T-shaped cross sections have the
potential for dispersion control required for widening the bandwidth of a TWT

Jain, Raju, Gupta, Kapoor, and, more extensively, Ghosh used the Sinha’s number-of-dielectric-
tubes model to study inhomogeneously loaded structures for widening the bandwidth of a TWT at
high interaction impedance values

Ghosh added a rigour to the model by considering nonuniform radial propagation constant over
the equivalent dielectric tube regions of the model
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Helix with dielectric wedge bar supports is modelled by an equivalent dielectric tube of an 
effective relative permittivity

Sheath 
helix

Metal 
envelope
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As
reffr   = wedge angle    N = number of supports

Helix with dielectric with dielectric supports deviating from simple wedge 
geometry is modelled by Sinha’s n-dielctric-tube model
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2

1

Metal envelope

Sheath helix

n dielectric tubes

n dielectric tube regions: n + 2 structure regions 

4(n+2) field constants out of which 2 
constants are zero in order to prevent 
the fields to blow up to infinity at the 
helix axis

4n + 6 non-zero field constants

n + 2 regions 

n + 1 region interfaces

4(n + 1) boundary conditions at region interfaces

+ 2 boundary conditions at the metal envelope

=  4n + 6 boundary conditions

Free-space region

Free-space region

Field expressions are substituted into 4n + 6 boundary conditions to obtain 4n + 6 
simultaneous equations in 4n + 6 field constants (so expressed that the right hand side of each 
equation is zero). The condition for non-trivial solution that the (4n + 6) x (4n + 6) determinant 
formed by the coefficients of field constants occurring in these equations is equal to zero 
yields the dispersion relation of the structure

Radial propagation constant 
considered to be uniform over the 
structure regions
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Sanjay’s rigorous nonuniform-radial-propagation-constant model for non-
homogeneously loaded helical structure

Field constants appear in the basic field expressions for the pth structure region
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With the help of the boundary condition at the sheath helix (at the interface 
between regions 1 and 2) (r = a)

(No current perpendicular to the 
helix winding direction)

(Dispersion relation)
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For the pth structure region, the normalized wave impedance functions are defined as

p = 1 refers to the free-space region inside the sheath-helix; p = 2 refers to the free-space
region outside the sheath-helix of half the helix thickness that accounts for the finite helix
thickness; p = n+2 to refers to the outermost dielectric tube region

Impedance boundary conditions at the inner surface of the outermost dielectric tube, 
that is, at the interface :)( 1 nbr

Impedance boundary conditions at the next inward interface :)( 2 nbr
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Considering the impedance boundary conditions at progressively inward interfaces, one
obtains the expressions for B2 /A2 and D2 /C2, to be substituted into

(Dispersion relation re-written)

_____________________________________________

Factors of practical relevance that can be included in the analysis of helical slow-wave
structure:

Finite helix thickness, Non-homogeneity of helix-supports deviating from simple wedge
geometry, Nonuniform radial propagation constant over the structure cross section, Effect of
axial periodicity of the helix, Finite resistivity of helix material, Resistivity of attenuator coating,
Asymmetry of dielectric helix-supports, Anisotropic loading of metal envelope caused by vanes
or segments projecting radially inward from the metal envelope, Multi-dispersion structure

2/1

0101

1

22

0000

1

22

01

000

)(/)()/(

)(/)()/(

)(

)(cot


























aIaKCD

aIaKAB

aI

aIk













14



Pierce’s Sheath-helix model

Cylindrical sheath of infinitesimal thickness that has infinite and zero conductivity in the direction
of helical winding and perpendicular to this direction, respectively, replacing the actual helix

At the sheath-helix surface
1. Electric field intensity parallel to the helix winding direction in the region
inside the sheath-helix helix is zero.
2. Electric field intensity parallel to the helix winding direction in the region
outside the sheath-helix helix is zero
3. Magnetic field intensity parallel to the helix winding direction in the
region inside the sheath-helix helix is continuous with that outside
4. Axial electric field intensity (or azimuthal electric field intensity) is
continuous with that outside

At the dielectric-dielectric interface
Axial and azimuthal electric field intensities as well as axial and azimuthal

magnetic field intensities are each continuous

At the metal envelope

Axial and azimuthal electric field intensities are each equal to zero

J. R. Pierce: Traveling-Wave Tubes. D. Van Nostrand (Princeton, 1950)
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Sensiper’s tape-helix model

Axial harmonic effects due to the axial periodicity of the helix taken into account

Actual helix replaced by a tape of infinitesimal thickness that conducts in all directions

Zero tangential electric field intensity everywhere on the tape surface corresponding to the
actual current distribution on the tape surface

Tape surface current density assumed to be predominantly along the helix winding direction,
with a defined distribution, presumably caused by an electric field intensity parallel to the

winding direction E//, under narrow-tape approximation

Constant amplitude of surface current density over the tape width with its phase varying along

the centreline of the tape winding as exp – (j0p /(2)), where 0 is the fundamental axial
phase propagation constant, and p is the helix pitch, as per a typically assumed current
distribution

Expected satisfaction of the boundary condition E// = 0 over the entire tape surface, for the
narrow tape, provided the latter is satisfied along the centreline of the tape surface

Field expressions found using Floquet’s theorem considering the helix periodicity

Relevant field constants and hence E// along the centreline of the tape surface found in terms of
the assumed tape surface current density distribution

E// along the centreline of the tape surface set equal to zero (E// = 0) yielding the dispersion
relation
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“If the tape is taken to be very narrow, that is, with  small compared with a, p, and , it seems 
quite reasonable to assume that essentially all of the current flows only along the tape.”

…….. “If the point of view is taken that the fields are produced by the currents which flow, with
the tape narrow and current flowing primarily in the direction of the tape, the specific
distribution of current across the tape will affect only to a small degree the fields in the near
neighborhood of the wire and to a much less degree the fields on adjacent and faraway turns.
Thus, if some reasonable assumptions are made concerning this current distribution, it is to be
expected that only small errors will be made in the field expressions”.
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18

…….. “If an inexact current distribution on the tape is assumed, the tangential electric field
can no longer be made zero everywhere on the tape, and this boundary conditions can be
only approximately satisfied. This may be done in several ways. One could, for example,
require the average value, or better the mean square value, of the tangential electric field
on the tape to be a minimum, with the propagation constant, which gives this minimum as
the solution. However, another procedure is used here which leads to a somewhat simpler
determinantal equation for calculative purposes and which appears to be a quite adequate
approximation. In this it is required that E// be zero along the centerline of the tape; in
other words, one of the boundary conditions is matched exactly along a line. (As noted
before), for a narrow tape the dominant current density is K//, and, loosely speaking, it is
E// which forces the current to flow along the tape. Thus, if the most important boundary
condition is satisfied on a line, one may hope to obtain a reasonable good approximation
to the exact case where the condition must be satisfied over a surface”…………….. “in the
neighborhood of this line which is almost a narrow tape.”

 Samuel Sensiper: Electromagnetic wave propagation on helical conductors. Technical
Report No. 194; May 16, 1951. Research Laboratory of Electronics, Institute of Technology,
Cambridge, Massachusetts (Sc D Thesis); and Proc. IRE 42 (1955) 144-161



Heuristic tape-helix model

Makes the analysis leading to the dispersion relation of a loaded helical slow-wave structure 
rather simple!

Dispersion relation of an unloaded helix in free-space in the tape-helix model:

S. Sensiper: Proc. IRE 43 (1955) 149-161
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Dispersion relation of a loaded helix in the sheath-helix model:



Combinational approach
Combine the dispersion relation of an unloaded helix in free-space in the tape-

helix model with the dispersion relation of a loaded helix in the sheath-helix model

A. K. Sinha and others: IEE Proceedings-H: Microwave, Antenna & 
Propagation 139 (1992), 347-350 
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Dispersion relation of an unloaded helix in free-space in the tape-helix model:

Dispersion relation of a loaded helix in the sheath-helix model:

Heuristic combinational approach:

Dispersion relation of a loaded helix in the tape-helix model
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The above dispersion relation of a loaded helix obtained by the heuristic tape-helix
model exactly agrees with the dispersion relation obtained by the analysis of the
loaded helix by the rigorous tape-helix model!

Dispersion relation of a loaded helix in the tape-helix model

A. K. Sinha and others: IEE Proceedings-H: Microwave, Antenna & 
Propagation 139 (1992), 347-350 
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Effect of attenuator coating in the analysis of helical structures

Helix is surrounded by a dielectric tube in a metal envelope

A resistive coating is applied on the inner surface of the dielectric tube

Helix turns are short-circuited by the resistive coating 

Dielectric

Sheath 
helix

Attenuator 
coating

Metal 
envelope
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At the sheath-helix interface between regions 1 and 2

At the inner surface of the dielectric tube where the resistive coating is present: At the interface 
between regions 2 and 3 

At the metal envelope

[In general,  is a complex quantity

S = 0 (RS = ) corresponds to the absence of the attenuator 
coating

S =  (RS = 0) corresponds to a perfectly conducting coating] 
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Dielectric

Sheath helix

Attenuator 
coating

Metal 
envelope

RF quantities vary as

 is the attenuation constant

r argument with functions Bessel modified on the depend quantities RF

The dispersion relation can be obtained with the help of the field expressions and 

the boundary conditions and solved for the complex argument r

The solution for  and hence for 

gives the  and 

There exists an optimum value of the 

surface resistance RS = 1/S for 

maximum 

P. K Jain and others: IEEE Trans. 
Electron Devices 35 (1988), 549-
558
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Could it be possible to interpret the surface resistance of coating on individual dielectric

helix-supports RS for the effective surface resistivity on the inner surface of the

equivalent dielectric tube RS,eff ?

As = Area of all the support rods

A = Area of the region outside the helix within the 
envelope (including the support rods and the free-space 
regions) 
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Complex permittivity:
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Asymmetry of the dielectric helix-supports

Dr. Amarjit Singh once in a social gathering at Pilani suggested me that we should take
into account in our analysis the effect of the asymmetry of the dielectric helix-supports,
a problem of relevance to the design of wideband TWTs. In turn, I passed on the
problem to Sinha, who succeeded in developing the analysis for such asymmetry and
demonstrated the presence of a band gap in the dispersion diagram.

Asymmetry:

Dielectric helix-supports are not symmetrically arranged around the helix

Dimensions of the dielectric helix-supports may be different from support to support

Dielectric constants of the dielectric helix-supports are not the same for all the supports

Consequence: Stop band in the - dispersion characteristics
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Region outside the helix divided into ‘n’ regions
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Asymmetric support structure

Symmetric support structure

One of the support rods is offset
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A:  = 00

B:  = 100

C:  = 200



Phase shift = Axial phase 
propagation constant times the 
helix  pitch

A: Cutoff frequency

B: Stop-band width

(Helix radius a =0.7 mm, Envelope radius b =1.5 mm,

Support rod dielectric constant r = 6.5, Wedge angle 

=600)

With the increase of offset angle

, the cutoff frequency decreases
and the stop-band width increases

Agreement with HFSS: cutoff frequency 
within 1.5% and stop-band width within 
0.1%

Computer time: ~ 1s for a data point 
against  ~ 25 min for HFSS
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Zero-to-slightly-negative-dispersion structure 
for wideband performance

Anisotropically loaded helix
Metal vane/ segment loaded envelope for negative dispersion

Inhomogeneously loaded helix:
Helix with tapered geometry dielectric supports such as
half-moon-shaped and T-shaped supports

Negative dispersion ensures constancy of Pierce’s velocity synchronization parameter b with
frequency

Wideband Multi-Octave TWTs 
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Negative dispersion:        increases with frequency 
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Multi-section, Multi-Dispersion Structures for Ultra-Wideband TWTs

Examples of wideband multi-section devices

Twystron

The first section is a klystron providing a double-hump gain-frequency response. The 
second section is a TWT providing a peak between the two humps of the first section in 
the gain-frequency response. 

Two-section Gyro-TWT

A gyro-TWT is inherently a two-hump device corresponding to the beam-mode dispersion 
line intersecting the waveguide dispersion hyperbola at two points. Grazing intersection, 
ideally, provides a single intersecting point.

One may use two dielectric loaded sections, one of which should provide a single peak 
between the two peaks provided by the second section, in the gain-frequency response. 
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is proportional to 

Conventional TWTs with multi-dispersion, multi-section structures

Small-signal gain equation BCNG ~
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Gain-frequency response: 

Lower gain at lower frequencies as G is proportional to f

Lower gain at higher frequencies as G is proportional to K1/3, the latter 
decreasing with frequency

Conventional structure: If you had increased the length l, then the gain G would be 
compensated at lower frequencies f. However, then the gain G would become very high at 
higher frequencies f.

Therefore, let us arrive at the design of a helical slow-wave structure the effective length 
of which is large at lower frequencies but at the same time the effective length becomes 
relatively smaller at higher frequencies. (The design should ensure that the gain is not 
enhanced at any frequency to a high value causing oscillation in the device). 

The answer lies in a multi-dispersion, multi-section conventional helix TWTs!   

. 

is proportional to G lfK 3/1

39



One positive-dispersion helix section of length l1 synchronous with the beam only at lower 
frequencies and the other nearly dispersion-free helix section of effective length length l2 

synchronous with the beam both at lower and higher frequencies.

Effective length increased to l1+ l2 at lower frequencies
Effective length reduced to l2 at higher frequencies (since the section

of length goes out of synchronism at higher frequencies

We have to control (i) the nature and the amounts of dispersion of of the  sections by 
suitably loading the sections and (ii) the lengths of the two sections  

Analysis should be capable of finding the dispersion and interaction impedance
characteristics of the structure sections, say, with metal segment loaded envelopes
and their control by structure section parameters like segment dimensions and
relative section lengths.

Select structure sections such as segment loaded helices of controllable dispersion

is proportional to G lfK 3/1
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Thank you!
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