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The electrons beyond the beam-waist of the gun if left to them

would diverge out due to Coulomb repulsive force between

them. The function of the magnetic focussing structure is to

provide the Lorentz force to counteract this Coulomb repulsive

force thereby constraining the electron beam to move parallel

to the beam axis beyond the beam-waist of the gun and

transmit the beam into the interaction region of a linear-beam

microwave tube (such as the TWT).
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Cross-section of the beam through its axis showing the magnetic flux

lines cutting through the beam edge which down the axis become parallel

to the latter, and also showing an element of electron trajectory PQ inside

the beam (a); an element of area dS (= PQQ'P') generated by rotating the

element of electron trajectory PQ through an infinitesimal angle d, for the

estimate of magnetic flux through such an area element, and the unit

vector an inwardly normal to the area element and the axial unit vector ax,

(b) and the unit vectors an and az drawn on the element of trajectory (c).



Though the magnetic flux density of the focussing structure is

predominantly axial yet it has adequate radial component due to which the

axially moving electrons of the beam will experience Lorentz force to have

an azimuthal velocity component. Consequently, the interaction between

the azimuthal component of electron velocity and the axial component of

magnetic flux density provided by the structure would give rise to the

required radial Lorentz force to counter-balance the space-charge force

plus the centrifugal force of the circular electronic motion.
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Element dB of magnetic flux B

through an element of beam strip 

generated by making a complete 

revolution of the element of an 

electron trajectory in the beam

Integrating

Second term in the right hand side is 

the integration constant.  













BkB

dt

d




0

(condition at the cathode: zero 

electron velocity, to find the 

integration constant, the subscript k

referring to the cathode) 



6

:
2

kkBk Br 

BBc  

:2BrB  
































2

1
2 r

r

B

BB

dt

d kk









22

2

BkB

dt

dr


(Busch’s theorem)













2

0

c

k

dt

d

B



magnetic flux treating the magnetic flux density  as predominantly axial 

and perpendicular to the circular cross section of the portion of  the 

beam of radius r, that is, of area r2

magnetic flux at the cathode, rk being the beam radius at the 

cathode and Bk being the magnetic flux density at the cathode
































2

1
2 r

r

B

B

dt

d kkc

Angular velocity of a beam electron, in 
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In the absence of magnetic flux

linking with the cathode (under
Brillouin condition), all beam

electrons rotate with the same

velocity c/2 independent of

their radii as if the beam is a

rotating rigid bar.
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(rewritten)

Expanding binomially and ignoring higher 

powers of /a

Beam-scalloping: sinusoidal 

variation of the beam-edge radius 

along the structure if the cathode 

is magnetically shielded (Bk = 0)
and the beam radius at the entry 

plane (z = 0) has the value that is 

desired to be maintained constant 

at r = rM = a. Here,  is the 

maximum value of the radius 

variation .
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Beam-scalloping: sinusoidal variation of the beam-edge radius

along the structure if the cathode is magnetically shielded (Bk

= 0) and the beam radius at the entry plane (z = 0) is the value

that is desired to be maintained constant at r = rM = a. Here, 

is the maximum value of the radius variation .
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mzBmzA cossin 

0B

0A

0 BA

(rewritten)

mzBmzAaar cossin   The radius of the beam edge

changes periodically or, in other

words, the beam scallops if either or

both of A or B have non-zero values.For no beam scalloping one

has to have .

mzBmzA cossin  (rewritten)

Impose the condition  = 0 at z = 0 implying

that the beam enters the magnetic field

region at the beam-waist with beam-edge

radius equal to r = a = rM .

0cos/  mAmzmAdzd
Impose the condition d/dz = 0 at z = 0
implying that there should be no radial

component of beam velocity at the entry of

the focussing structure: r = a = rM .

mzAmzBmzA sincossin 
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Impose the conditions  = 0 and d/dz = 0 both at z = 0  the entry of the

focussing structure where the beam-wedge radius: r = a = rM .

0 BA

0cossin  mzBmzA

No beam scalloping

Brillouin conditions for no beam-scalloping
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 = 0 and at z = 0 implying that the beam

enters the magnetic field region at the

beam- waist with beam-edge radius equal to

r = a = rM .

(ii)

(iii)

(iv) d/dz = 0 at z = 0 implying that there should

be no radial component of beam velocity at

the entry of the focussing structure: r = a =

rM .

(i) The cathode is magnetically shielded: 0kB
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Larger focusing magnetic flux density is 

required to confine an electron beam of 

higher beam current / lower beam voltage / 

higher beam perveance (perv = I0 /V0
3/2 ). 

The magnetic flux density needs to

be doubled if the beam current is

increased 4 times / the beam voltage

is decreased 16 times / the beam

radius is halved.
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Schematic representation of Brillouin focusing 

showing a magnetically shielded cathode

In Brillouin focusing, the

cathode is shielded from

magnetic field by employing a

screen in the form of a pole

piece made of a magnetic

material, with a hole through

which the electron beam can

pass in order to realize

Brillouin conditions.
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Some limitations of Brillouin focusing:

1. In order to realize the Brillouin conditions, the cathode has to be

magnetically shielded; the precise Brillouin value of magnetic flux density

related to the beam voltage, beam current and beam radius has to be

attained abruptly at the entry of the focusing structure; and the beam

waist-radius has to be precisely set to the beam radius desired to be

maintained constant.

2. Uniform cathode emission has been assumed and thermal velocity

effects have been ignored. As a result, the predicted Brillouin magnetic

field would be lower than the actual in practice.

3. Brillouin conditions are prone to being offset by the unpredictable

space-charge forces due to the formation of positive ions in the tube.

4. Brillouin conditions imply DC conditions. Thus, the beam current has

been assumed to be constant. However, it changes due to local RF

bunching and more so in the large-signal regime. Consequently, this is

likely to change the beam radius and can cause beam scalloping.



Confined-Flow Focusing

Confined-flow focusing

• Makes the focusing conditions to be satisfied less stringent than

Brillouin focusing conditions.

• Allows magnetic flux lines to thread into the cathode unlike in

Brillouin focusing.

• Provides lesser sensitivity to beam current density modulation than

Brillouin focusing.

• Requires, however, larger magnetic field for beam confinement than

Brillouin focusing.
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In confined-flow focusing, the magnetic flux 

lines cutting through the beam-waist are 

considered to extend to the cathode and 

follow the beam trajectories.
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The confined-flow focussing requires (i) a magnetic flux density at the

beam-waist of the convergent gun, that is, at the entrance of the

magnetic focussing structure greater  though not much greater  than

the corresponding Brillouin value and (ii) a very small magnetic flux

density relative to the Brillouin value threading into the cathode.

(typical)
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Periodic Permanent Magnet (PPM) Focusing

Ring-magnet cells (shown typically, three, in number) in a PPM for the

axial (a) and radial magnetization (b) showing magnetic flux lines

(dotted) inside the stricture.
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A solenoid focussing structure becomes rather heavy; moreover, it also needs an

external power supply to make it further heavier.

The permanent magnet (PM) focussing structure is suitable for a microwave tube

requiring a small interaction length such as the klystron. However, if the length of

a PM is increased by a factor of N, say, then all other dimensions of the structure

have also to be increased in the same proportion to ensure that the magnetic flux

density in the interaction region does not fall, requiring an increase in the inner

and outer radii, for instance, of a tubular PM each by the same factor N. This will

amount to increasing the volume and hence the weight of the PM to N3 times 

attributable to the increase in magnetic field and magnetic energy stored outside

the magnet which does not help in focussing the electron beam.

In a periodic permanent magnet (PPM) focussing structure, instead of a single

PM of its length increased by a factor of N, an array of N identical magnet cells

are used. The length of such a structure can be increased N times without

requiring to increase its transverse dimensions as is necessary in a PM. Thus

one gets the advantages of a PPM over its PM counterpart in terms of weight by a

factor of N3/N = N2. In such a PPM structure, the magnetic flux lines external to

the magnet due to consecutive cells are directed oppositely causing a reduction

in magnetic field and consequently a reduction in the loss of magnetic energy

outside the magnet.
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A typical arrangement of magnetic pole pieces

between magnets to bring magnetic flux density

close to the axis of an axially magnetized PPM.

The advent of light-weight magnetic materials such as

samarium-cobalt (SmCo5 and Sm2Co17) and ALNICO-5 has

made it possible to suitable design light-weight PPM.
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current / beam perveance 

Has alternating pass and stop bands of solution on the scale of that 

is proportional        :      

band) pass(first 66.00 



band) stop(first 72.166.0 

band) pass (second76.372.1 

band) stop (second1.676.3 
and so on. 
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The stop bands are wider than the

pass bands and the widths of both the

pass and sop bands increase with the

order of the band.
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In a pass band, the solution for the normalized beam radius  is stable and 

periodic with the normalized axial distance Z, the beam radius ripples 
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In a pass band, the solution for the normalized beam radius  is stable and 

periodic with the normalized axial distance Z, the beam radius ripples 

depending on the value of  relative to that of .
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currents (=0) continues to be valid even for
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