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Some Basic Enabling 

Concepts in Microwave Tubes



 Electron bunching: relativistic and non-relativistic 

 Conservation of kinetic energy in M-type tubes

 Induced current on electrodes due to electron beam flow 

 Plasma frequency 

 Space-charge waves

 Cyclotron waves

 Devices based on cyclotron resonance maser and Weibel 

instabilities 

 Space-charge limiting current
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Some Basic Enabling Concepts



Electron Bunching: Relativistic and Non-Relativistic 

In a microwave tube the electrons in a beam of electrons are 

bunched in an interaction region of the device where 

 their kinetic energy, for instance, in a TWT, or

 their potential energy, for instance, in a magnetron, 

is transferred to RF waves in an interaction region of the device. 

The bunching mechanism may be

 non-relativistic, for instance, in a TWT or

 relativistic, for instance, in a gyrotron. 
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“Just picture a steady stream of cars from San Francisco to Palo Alto;

if the cars left San Francisco at equal increments and at the same

velocity, then even in Palo Alto they would be evenly spaced and you

would call this as direct flow of cars. But suppose somehow the speed

of some cars, as they left San Francisco, was increased a bit and

others retarded. Then, with time, the fast cars would tend to catch up

with the slow ones and they would bunch into groups. Thus, if the

velocity of cars was sufficiently different or the time long enough, the

steady stream of cars would be broken and, under ideal conditions,

would arrive in Palo Alto in clearly defined groups. In the same way an

electron tube can be built in which the control of the e-beam is

produced by the principle of bunching, rather than the direct control of

a grid in a triode…….”

Non-relativistic axial bunching in a klystron 

(as explained by Russell Varian and Siguard Varian)



Applegate diagram

Bunches form at the second/output (catcher) cavity around the

electrons that had crossed the first/input (buncher) cavity when

the sinusoidal voltage there (input voltage) crossed from negative

(decelerating) to positive (accelerating). Bunches arrive at the

interval of T0 (the time period of the input voltage)
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In the Applegate diagram for a

two-cavity klystron, a bunch of

straight lines of slopes

proportional to electron velocities

explains the arrival of electron

bunches at the location of the

crossing of these lines, at the

catcher cavity of the klystron that

consists of the input buncher and

the output catcher cavities in its

simplest two-cavity configuration.

This arrival of electron bunches at the output catcher cavity takes place at

the interval of the time period T0 (=1/f0), say, of the sinusoidal input voltage

of frequency f0, say, of the buncher cavity around the electrons that had

crossed this cavity when the input voltage there crossed from its negative

(decelerating) to positive (accelerating) value.



Non-relativistic axial bunching in a travelling-wave tube  
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Bunching of typically two

electrons ‘A’ and ‘D’ subjected to

the accelerating and decelerating

RF electric fields, respectively, in

the interaction region of a TWT

around a reference electron ‘R’

that experiences no such fields.



Near-synchronism

for net energy

transfer from the

beam to RF waves:

phvv
~
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Relativistic azimuthal bunching in a gyrotron  
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Bunching of typically two electrons ‘A’ and ‘D’ subjected to the accelerating

and the decelerating RF electric fields, respectively, in the interaction region

of a gyrotron around a reference electron ‘R’ that experiences no such

fields.
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Near-cyclotron resonance for net

energy transfer from the beam to

RF waves:
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Conservation of kinetic energy in an M-type 

tube
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The electron moving along z in time t subject

to the electric field Ez along z is decelerated

and thus loses its average kinetic energy

equal to the amount of work done (force x

distance) by the electron (by transferring

energy to the field) given by
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(obtained earlier) 

The average the kinetic energy gained by an electron in its

motion along y is lost by it in its motion along z.

In crossed-field tubes, on the average, the kinetic energy of
electrons remains unchanged and their potential energy is
converted into RF energy.

(kinetic energy lost)(kinetic energy gained)
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Phase bunching in an M-type tube  

Let us consider three electrons.

The first electron, taken as the reference, enters the system to

experience the field at O where the RF electric has no transverse

component and has maximum axial decelerating field.

The second electron enters the system to experience the field at P

where the transverse component of RF electric adds to the DC electric

field in the negative y direction. This makes (dz/dt)time-averaged more for the

second electron at P than for the first electron at O.

The third electron enters the system to experience the field at Q where

the transverse component of RF electric in the positive y direction

reduces the electric field established by the DC electric field in the

negative y direction and thus reduces the field in the negative y

direction established by the DC electric field. This makes (dz/dt)time-averaged

less for the third electron at Q than for the first electron at O.

This makes the second electron and the third electron bunch around
the first electron.
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Sole (-)

P Q

R

E0

Decelerating phase

of RF field

dc electron 

trajectory

RF field line
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Induced current on electrodes due to electron beam flow

An electron starts from an electrode (A)

at a negative potential and is

accelerated by another electrode (B)

raised to a positive potential (V0). The

electron after the flight between the

electrodes A and B finally strikes the

electrode B at the positive potential.

Consider that there is a finite electron

transit time between the electrodes.

(The two electrodes (A and B) are

connected by a source of potential in

the external circuit).

Question

(1) Will there be a current in the external

circuit when the electron is in flight

between the electrodes? (2) And will

there be any current when the electron

strikes the electrode?



For an electron beam, the total

induced current is found by adding

triangular pulses of current

associated with each electron.

Current may even be induced in an

electrode to which no electrons

flow, if the number or velocity of

electrons approaching the

electrode is different from the

number or velocity of electrons

receding from it.

(Triangular current pulse)
Induced current due to the flow of an electron
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Plasma frequency (Langmuir frequency)
Consider an ensemble of electrons and positive ions maintaining

overall charge neutrality

Displacement of electrons from their equilibrium position to a small

extent

Space-charge electric field in the direction of the

displacement of electrons provides a restoring force

Overshoot of electrons

Restoring force again coming into play

Oscillation of electrons about their mean position at the natural

angular frequency, called the plasma frequency or Langmuir

frequency of electrons

Displacement of electron 

layers and the resulting 

space-charge restoring 

force
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(setting initial condition) 
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In an electron beam of infinite cross-sectional area, the electric 

fields are axial and thus the space-charge fields are constrained in 

the axial direction.

In a beam of finite cross-sectional area, the electric fields are axial 

as well as radial, with the result that the axial component is 

reduced in comparison to the infinite cross-sectional beam
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(Current density equation)

(Continuity equation)

(Force equation)

(Poisson’s equation)

Space-charge waves

Prerequisite
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(continuity equation)

(current density equation)(one-dimensional)

(small-signal approximation)
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Force equation
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RF quantities vary as 

Dispersion relation of Hahn and 

Ramo space-charge waves 

32

)(exp ztj  

)( 000 vjvjj
z

v
t

D  










pjD 

 j
z

j
t










,

pv   0

)( 0vjj p  

(recalled)



The upper sign     Fast space-charge 

wave

The lower sign     Slow space-charge 

wave

(Hahn and Ramo space-charge waves)
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

In a frame of reference which moves with the dc beam velocity 

v0, an observer ‘sees’ a Doppler-shifted frequency  given by 

34

00 v




















pp

p

v

v

v

vv
00

1

p

p





 











 1

p 

pv   0

0vv
p

p











(space-charge-wave dispersion relation) 



Cyclotron waves
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(Dispersion relation for cyclotron waves)
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Space-charge waves Cyclotron waves

(Current density equation)

(Continuity equation)

(Force equation)

(Poisson’s 

equation)

Upper sign for the fast wave and lower sign for the slow wave

Force equations along x and y

for a magnetic field along z
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Space-charge and cyclotron waves

Space-charge waves Cyclotron waves

Upper sign for the fast wave and lower sign for the slow wave
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Amplification of space-charge waves

• An electron beam of uniform diameter in a resistive-wall cylindrical  

waveguide

• An electron beam in a rippled-wall (varying diameter) conducting-wall 

cylindrical waveguide

• An electron beam mixed with another beam of a slightly different DC  

electron beam velocity (two-stream amplifier)

• An electron beam penetrating through a plasma (beam-plasma amplifier)

• An electron beam interacting with RF waves supported by a slow-wave 

structure (TWT)  
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Intersection between 

slow space-charge and circuit waves

Upper sign for the fast wave and 

lower sign for the slow wave
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Intersection between 

fast-cyclotron and circuit waves

Upper sign for the fast wave and 

lower sign for the slow wave
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Plots of  beam-mode and waveguide-mode dispersion characteristics 

showing the operating point as the intersection between these plots 

(Prepared by Vishal Kesari)

Gyrotron                              Gyro-BWO                                   CARM

SWCA                                             Gyro-TWT
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Devices based on cyclotron resonance maser and 

Weibel instabilities  

Gyrotron: cyclotron 

resonance maser (CRM) 

instability

Slow-wave cyclotron 

amplifier (SWCA): 

Weibel instability

Cyclotron auto-

resonance maser 

(CARM): CRM and Weibel 

instabilities in equal 

proportions
Destabilization of 

fast wave 
cvp 

cvp 
cvp ~


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If both Weibel instability and CRM instability are 

present in equal proportions (auto-resonance)

)0(
2

2

 D
mc

e
F

m

e









22

2 1

c
F





F
c

1






F
cvp

1
 1

~
F

cvp ~







~
cs





F

s c  1
~
F

Destabilization of slightly fast waves: 

Cyclotron auto-resonance maser

1
~
F



52

Space-charge limiting current

The motion of the electrons in a vacuum tube is possible due to the

presence of the positive ions that are always practically present in the tube

and that neutralize the negative charges of the electrons.

If the neutralizing positive ions were absent, the negative space-charge of

the electrons would have caused a depression in the potential in the region

of the traversal of electrons thereby causing the electrons to slow down,

stop and even return.

At sufficiently high electron beam currents, a virtual cathode forms due to

the potential depression and the electrons in excess of the maximum

number are reflected back to the electron source. The presence of the

negative space-charge of the electrons in an electron tube sets the upper

limit of the beam current in the tube called the space-charge-limiting (SCL)

current. This limit is imposed by the potential depression caused by the

negative space-charge in the tube that retards the flow of electrons or

reflects the flow back to form what is known as the virtual cathode.

The plasma is effective in compensating for these space-charge effects in

high-current beams allowing higher beam current operation of plasma-

filled tubes than vacuum tubes.
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Space-charge limiting current of an electron beam 

in a metal  surrounding 
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(infinitesimally thin hollow electron beam) (thick solid electron beam)

(relativistic mass factor of an 

electron corresponding to an 

accelerating potential      )
cV



Infinitesimally thin hollow electron beam

l = charge per unit length

PE = potential energy of 

the electron of a thin 

beam being the work 

done in moving the 

electron along the electric 

field line from the metal 

envelope to the position 

of the thin beam 
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hollow-beam 

boundary

Metal envelope 

Beam axis

0r

Space-charge limiting current of an infinitesimally 

thin ‘hollow’ electron beam in a drift tube  (metal 

envelope)
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The subscripts b and i refer to the beam and the ion 

of the plasma, respectively.
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(charge neutralizing 

factor)

ni = number density of 

plasma ions

nb = number density of beam 

electrons

56

b

b

i
b

b

ib

r

r
e

r

re 0

0

0

0

ln
2

)1(

ln
2

)(
PE



















b

ib

bb

l
beamthin

r

re

r

re

r

re
W 0

0

0

0

0

0

ln
2

)(
ln

2
ln

2
PE











 


b

i

b

i
n

n

n
f 





b

nb

b

b

i
b

b

b

i
b

b

b

i
b

r

rfe

r

rn

n
e

r

ren

en
e

r

r
e

0

0

0

0

0

0

0

0

ln
2

)1(
ln

2

)1(

ln
2

)1(

ln
2

)1(

PE






































57

b

nb

b

b

i
b

r

rfe

r

rn

n
e

0

0

0

0

ln
2

)1(
ln

2

)1(

PE















JIb 

bbvJ 

bb
b v

I





beam current interpreted as positive

)1)((ln
2

PE 0

0

n

bb

b f
r

r

v

I
e 



)1)((ln
2

PE 0

0

n

bb

b f
r

r

v

I
e 



)1)((ln
2

PE 0

0

n

bb

b
beamthin f

r

r

v

I
eW 





58
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2/1 mcVe cc 

Relativistic kinetic energy of the beam 

Vc = Cathode potential

c = Relativistic mass factor corresponding to the potential Vc.

It is assumed that the drift space is grounded and that the

electron beam is launched from a cathode at a negative voltage,

Vc <0 with respect to the wall of the drift tube such that the

potential within the drift tube will be the potential of the wall.

Relativistic kinetic energy of the beam 
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The transport of an electron beam of high current is possible in a drift

tube when the relativistic kinetic energy of the beam in the limit

exceeds its potential energy PE. The expression for the kinetic energy

needs to be found giving due consideration to its reduction caused by

the space-charge depression in the beam resulting from the depression

of the effective accelerating potential in the drift tube. As the beam

current increases, the electrons are increasingly slowed down due to

the space-charge depression until, at some point, the electron velocity

is retarded from vb to nil (=0) and the beam current reached its limiting

valuethe so-called space-charge limiting current ISClim.
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(As the beam current increases, the electrons are increasingly slowed

down due to the space-charge depression until, at some point, the

electron velocity is retarded from vb to nil and the beam current reached

its limiting valuethe so-called space-charge limiting current ISClim).

This in turn corresponds to the reduction of the relativistic kinetic

energy of the electron by an amount mc2(b-1) from its value mc2(c-1),

the latter corresponding to the potential Vc of the drift tube relative to

the cathode.

It is assumed that the drift space is grounded and that the electron

beam is launched from a cathode at a negative voltage, Vc <0, with

respect to the wall such that the potential within the drift tube will be the

potential of the wall.

(c is the relativistic mass factor corresponding to the potential Vc).
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For beam transport, KE>PE. The space-charge limiting 

current corresponds to
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(Infinitesimally thin hollow electron 
beam)
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Space-charge limiting current of a thick solid 

electron beam in a metal envelope

Thick solid electron beam in a metal envelope

0rr 

brr 

Metal envelope

Beam boundary

(thick beam)

Electric field inside the beam:

Electric field outside the beam and within the metal envelope:
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Potential energy of the electron of a thick beam is the work done

in moving the electron along the electric field line from the metal

envelope to the position of the beam at its axis = PE

, 

Solid thick beam
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, 

Solid thick beam Infinitesimally thin hollow beam

The expression for KE of a solid thick beam and that of an

infinitesimally thin beam are the same. However, the

corresponding expressions for PE differ only in one factor. The

concerned factor for a solid thick beam and that of an

infinitesimally thin hollow beam are:
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are , respectively.

Therefore, the space-charge limiting current derived from the

expression for the potential energy of the solid beam will differ

from the corresponding expression for the infinitesimally thin

hollow beam only in respect of this factor, the expressions for

the kinetic energy remaining unchanged.



Infinitesimally thin hollow beam Solid thick beam

(charge neutralizing factor)
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The space-charge limiting current can be increased by placing the metal

envelope closer to the beam and/or by increasing the charge neutralizing

factor.

In a virtual cathode oscillator, the metal envelope is located far off from the

electron beam to increase the ratio r0/rb and hence to reduce the value of

the space-charge limiting current with a view to forming a virtual cathode.

Virtual cathode oscillator (VIRCATOR)


