Appendix to Lecture on

Synthesis of Pierce Electron Gun

B.N. Basu
<bnbasu.india@gmail.com

1

Child-Langmuir's Relation

Potential distribution in a planar diode in the region between two large conducting plates separated by a small distance d and kept at difference of potential V_0 . The plate at higher potential $V=V_0$ is the anode. The plate at lower potential V=0 is the cathode.

The broken line shows the linear variation of potential in the absence of space charge. The line with crosses gives the variation of potential in the presence of space charge considering a zero velocity of emission at the cathode showing a zero slope at the cathode. The solid line gives the potential variation in the presence of space charge considering a finite velocity of emission at the cathode showing a voltage minimum and zero slope at the *virtual cathode*.

Under the space-charge limited condition, the number of electrons in flight between the cathode and the anode is such that the effect of the *negative* space-charge field due to them at the cathode is neutralized by that of the electrostatic field due to the *positive* potential applied on the anode. The electrons in excess over this number are repelled back into the cathode. This would correspond to a zero slope in the potential variation, and hence to a zero electric field intensity, at the cathode.

The electric flux lines would terminate on the electrons rather than thread into the cathode. The distribution of potential in this case is shown as the line with crosses in the accompanying figure. If the slope of potential variation is positive, more electrons would leave the vicinity of cathode which would increase the negative space charge in the region and hence depress the potential distribution curve towards the zero slope at the cathode. On the other hand, if the slope overshoots to a negative value, the emitted electrons would be forced back to the cathode which would reduce the negative space charge in the region and consequently lift the potential distribution curve to have a zero slope at the cathode.

Potential distribution in the planar diode in the absence of space-charge

d

$$V = \frac{\partial^2 V}{\partial^2 x} + \frac{\partial^2 V}{\partial^2 y} + \frac{\partial^2 V}{\partial^2 z} = 0$$

Potential distribution in the cathodeanode region. The broken line shows the linear variation of potential in the absence of space charge.

7

Potential distribution in the planar diode in the presence of space-charge

Solution of Poisson's equation under the potential distribution at equilibrium corresponding to a zero slope at the cathode

Potential distribution in the cathodeanode region. The line with crosses gives the variation of potential in the presence of space charge considering a zero velocity of emission at the cathode and showing a zero slope at the cathode (z=0) held at zero reference potential (V=0).

Solution is sought
subject to
boundary
conditions at the $\frac{dV}{dz}\Big|_{z=0} = 0$ (at the cathode
boundary) $V|_{z=0} = 0$ cathode

$$\frac{d}{dz}\left(\frac{dV}{dz}\right)^2 = 2\frac{dV}{dz}\frac{|J|}{\left(2|\eta|\right)^{1/2}\varepsilon_0}V^{-1/2}$$

$$\frac{d}{dz} (\frac{dV}{dz})^2 = 2 \frac{dV}{dz} \frac{|J|}{(2|\eta|)^{1/2} \varepsilon_0} V^{-1/2}$$

 $\leftarrow \quad \text{Integrating and putting the integration constant equal to } 0$ subject to the boundary conditions: $dV/dz|_{z=0} = 0$; $V|_{z=0} = 0$

$$\left(\frac{dV}{dz}\right)^2 = 2\frac{|J|}{(2|\eta|)^{1/2}\varepsilon_0}\frac{V^{1/2}}{1/2} = \frac{4|J|}{(2|\eta|)^{1/2}\varepsilon_0}V^{1/2}$$

$$\frac{dV}{dz} = \left(\frac{4|J|}{(2|\eta|)^{1/2}\varepsilon_0}\right)^{1/2} V^{1/4}$$

$$\int V^{-1/4} dV = \left(\frac{4|J|}{(2|\eta|)^{1/2}\varepsilon_0}\right)^{1/2} dz$$

$$\frac{V^{3/4}}{\frac{3}{4}} = \left(\frac{4|J|}{(2|\eta|)^{1/2}\varepsilon_0}\right) \quad z$$

T

$$V^{3/4} = \frac{3}{4} \left(\frac{4|J|}{(2|\eta|)^{1/2} \varepsilon_0} \right)^{1/2} z$$

$$\downarrow$$

$$\downarrow$$

$$U^{3/2} = U^{3/2}$$

 $|J| = \left(\frac{4}{9}\right)(2|\eta|)^{1/2}\varepsilon_0 \frac{V^{3/2}}{z^2}$ (Child-Langmuir's law)

Current distribution in a planar diode

$$\begin{split} \left|J\right| &= \left(\frac{4}{9}\right) (2|\eta|)^{1/2} \varepsilon_0 \frac{V^{3/2}}{z^2} \quad \text{(Child-Langmuir's law) (rewritten)} \\ &\downarrow \qquad \qquad J: \text{ beam current density at a distance } z \text{ from the cathode} \\ V: \text{ potential at a distance } z \text{ from the cathode} \\ \frac{I_0}{A} &= \frac{4}{9} \sqrt{2|\eta|} \varepsilon_0 \frac{V_0^{3/2}}{d^2} \quad \begin{array}{l} I_0: \text{ beam current} \quad V_0: \text{ beam voltage} \\ A: \text{ cathode cross-sectional area} \quad d: \text{ anode-cathode distance} \\ \varepsilon_0: \text{ free-space permittivity} \quad \eta: \text{ charge-to-mass ratio of an electron} \end{array} \end{split}$$

(Child-Langmuir's relation for a planar diode)

3/2-power law and beam perveance

$$\frac{I_0}{A} = \frac{4}{9} \sqrt{2|\eta|} \varepsilon_0 \frac{V_0^{3/2}}{d^2} \quad \text{(following from Child-Langmuir's law)}$$

$$\downarrow$$

$$\frac{I_0}{V_0^{3/2}} = \frac{4}{9} \sqrt{2|\eta|} \varepsilon_0 \frac{A}{d^2} = \text{beam perveance}$$

$$\downarrow \qquad \text{The beam current is proportional to the beam voltage raised to the index of power 3/2. Hence the name 3/2-power law.}$$

The unit of beam perveance is $A/V^{3/2}$ or perv

$$\frac{I_0}{A} = \frac{4}{9} \sqrt{2|\eta|} \varepsilon_0 \frac{V_0^{3/2}}{d^2}$$
 (Child-Langmuir's relation for a planar diode)

If we increase the distance d between the cathode and the accelerating anode of a diode to provide a hypothetical interaction region and accommodate an interaction structure between them, then the beam current I_0 would reduce to an insignificant value, according to the Child-Langmuir's relation.

With the help of an electron gun, we form an electron beam of the desired beam voltage, current and cross-sectional area with the help of an electron gun and throw it into the interaction region and accommodated an interaction structure between them, then the beam current would reduce to an insignificant value.

Langmuir-Blogett's Relation

Deduction of Langmuir-Blogett's relation

 $\frac{d^2V}{dr^2} + \frac{2}{r}\frac{dV}{dr} = -\frac{\rho}{\epsilon_c}$ (one-dimensional Poisson's equation in spherical-polar coordinates) Cathode sphere ← Langmuir-Blogett's solution to obtain (V=0) Anode (V=Vo) Anode sphere Gun axis Cathode Beam waist Beam edge $V = \left(\frac{9I_0}{4(2|n|)^{1/2} \epsilon A}\right) r_c^{4/3} G(u)^{4/3}$ **Convergent Pierce** (potential as a function of radial coordinate) gun $G(u) = \ln \frac{r_c}{r} + \frac{3}{10} \ln^2 \frac{r_c}{r} + \frac{3}{40} \ln^3 \frac{r_c}{r} + \frac{63}{4400} \ln^4 \frac{r_c}{r} \dots$ We are going to find this series for a $A_c = 4\pi r_c^2$ (area of the cathode sphere of radius r_c) convergent beam

$$V^{3/4} = \frac{3}{4} \left(\frac{4|J|}{(2|\eta|)^{1/2} \varepsilon_0} \right)^{1/2} z \quad \text{(recalled for a planar diode with large cathode and anode)}$$

$$\downarrow \longleftarrow \quad |J| = \frac{I_0}{A_c} \quad A_c: \text{ Cathode area} \quad \qquad \frac{d^2 V}{dr^2} + \frac{2}{r} \frac{dV}{dr} = -\frac{\rho}{\varepsilon_0} \text{ (Poisson's equation)}$$

$$\downarrow \bigvee = \left(\frac{9I_0}{4(2|\eta|)^{1/2} \varepsilon_0 A_c}\right)^{2/3} z^{4/3} \longleftarrow \text{ The solution should pass on to}$$

Hence let us choose the following Tailor's series function for the potential:

We are going to justify the choice of this potential function.

$$V = \left(\frac{9I_0}{4(2|\eta|)^{1/2}\varepsilon_0A_c}\right)^{2/3} r_c^{4/3} G(u)^{4/3}$$

$$V = \left(\frac{9I_0}{4(2|\eta|)^{1/2}\varepsilon_0A_c}\right)^{2/3} z^{4/3}$$
(planar diode Child-
Langmuir's relation)
$$K' = \frac{I_0}{4\pi\varepsilon_0(2|\eta|\varepsilon_0)^{1/2}}$$

$$z \text{ is the distance of a point in the cathode-
anode region measured from, and
perpendicular to, the cathode: $z = r_c - r$.

$$u = \ln(r/r_c) = \ln(r_c - z)/r_c)$$

$$V = \left(\frac{4}{9}K'\right)^{2/3}G^{4/3}(u)$$

$$= \ln(r/r_c) = \ln(r_c - z)/r_c$$

$$U = \ln(r - z) \approx \frac{-z}{r_c}$$

$$G(u) \approx G(0) + uG'(0)$$

$$U = -z/r_c$$

$$G(u) = -z/r_c$$

$$G(u) = -(z/r_c)G'(0)$$

$$U = u = \frac{1}{2}$$$$

$$V = \left(\frac{4}{9}K'\right)^{2/3} G^{4/3}(u) \quad \longleftarrow \quad G'(0) = \pm 1$$

We are looking for the series: G(u)

Let us start with Poisson's equation:

$$V = \left(\frac{4}{9}K'\right)^{2/3} G^{4/3}(u) \qquad \longleftrightarrow \qquad G'(0) = \pm 1$$

$$\bigvee \qquad \text{We are looking for the series: } G(u)$$

$$\frac{dV}{dr} = \left(\frac{4}{3}\right) \left(\frac{9}{4}K'\right)^{\frac{2}{3}} G(u)^{\frac{1}{3}} \frac{dG(u)}{dr}$$

$$\frac{d^2V}{dr^2} = \left(\frac{4}{3}\right) \left(\frac{9}{4}K'\right)^{2/3} \left[\frac{1}{3}\right] G(u)^{-2/3} \left(\frac{dG(u)}{dr}\right)^2 + G(u)^{1/3} \frac{d^2G(u)}{dr^2}\right)$$

$$\downarrow$$

$$\frac{d^2V}{dr^2} + \frac{2}{r} \frac{dV}{dr} = \frac{K'}{r^2} V^{-1/2} \text{ (recalled)}$$

$$\downarrow$$

$$r^2 \left(\frac{dG(u)}{dr}\right)^2 + 3r^2 G(u) \frac{d^2G(u)}{dr^2} + 6rG(u) \frac{dG(u)}{dr} - 1 = 0$$

 $G'(u)^2 + 3G(u)G''(u) + 3G(u)G'(u) - 1 = 0$

 $G'(u)^{2} + 3G(u)G''(u) + 3G(u)G'(u) - 1 = 0$ $\downarrow \qquad \uparrow \qquad \text{(rewritten)} \\ \ln(r/r_c) = \ln 1 = 0 \\ G(0) = 0 \qquad \qquad \text{(recalled)} \end{cases}$ (recalled)

$$G'(0)^2 = 1 \longrightarrow \boxed{G'(0) = \pm 1}$$

Minus sign corresponds to the convergent beam in which the cathode is outside the anode $(r_c > r_a)$.

cathode towards the anode. That makes at the cathode: |G'(0) = -1|

Similarly, for a divergent beam: |G'(0) = 1|.

Thus, we can obtain the first two terms of the series:

$$G(u) = G(0) + uG'(0) + \frac{u^2}{2!}G''(0) + \frac{u^3}{3!}G'''(0) + \frac{u^4}{4!}G''''(0) + \dots$$

$$G(0) = 0$$

$$G'(0) = -1 \text{ (convergent beam)}$$

$$G'(0) = 1 \text{ (divergent beam)}$$

 $G'(u)^2 + 3G(u)G''(u) + 3G(u)G'(u) - 1 = 0$ (recalled)

 $\bigvee \longleftarrow$ Upon differentiation

 $2G'(u)G''(u) + 3G(u)G'''(u) + 3G''(u)G'(u) + 3G(u)G''(u) + 3G'(u)^2 = 0$

Thus, we can obtain the third term of the series:

 $2G'(u)G''(u) + 3G(u)G'''(u) + 3G''(u)G'(u) + 3G(u)G''(u) + 3G'(u)^2 = 0$

G(0) = 0 G'(0) = -1 (convergent beam) G'(0) = 1 (divergent beam) Thus, similarly we can obtain the fourth term of the series:

$$2G'(u)G''(u) + 3G(u)G'''(u) + 3G''(u)G'(u) + 3G(u)G''(u) + 3G'(u)^2 = 0$$

$$\int$$

$$G'''(0) = -\frac{18}{40}$$
 (convergent beam)
$$G'''(0) = \frac{18}{40}$$
 (divergent beam)

Following the same procedure we can then find

$$G''''(0) = \frac{189}{550}$$
 (convergent beam)
$$G''''(0) = -\frac{189}{550}$$
 (divergent beam)

G(0) = 0 G'(0) = -1 (convergent beam) G'(0) = 1 (divergent beam) $G''(0) = \frac{3}{5} \text{ (convergent beam)}$ $G''(0) = -\frac{3}{5} \text{ (divergent beam)}$

$$G(u) = G(0) + uG'(0) + \frac{u^2}{2!}G''(0) + \frac{u^3}{3!}G'''(0) + \frac{u^4}{4!}G'''(0) + \dots$$

$$u = \ln(r/r_c) \quad G(0) = 0$$

$$G'(0) = -1$$

$$G''(0) = -\frac{3}{5}$$

$$G'''(0) = -\frac{18}{40}$$

$$G'''(0) = -\frac{18}{40}$$

$$G'''(0) = -\frac{189}{550}$$

$$G'''(0) = -\frac{189}{550}$$
(divergent beam)
$$G'''(0) = -\frac{189}{550}$$
(divergent beam)
$$G'''(0) = -\frac{189}{550}$$

$$G'''(0) = -\frac{189}{550}$$

$$G'''(0) = -\frac{189}{550}$$
(divergent beam)
$$G'''(0) = -\frac{189}{550}$$

$$G'''(0) = -\frac{189}{550}$$
(divergent beam)
$$G'''(0) = -\frac{18}{7c} + \frac{3}{10}\ln^2\frac{r}{r_c} - \frac{3}{40}\ln^3\frac{r}{r_c} + \frac{63}{4400}\ln^4\frac{r}{r_c} \dots$$
(convergent beam)
$$G(u) = G(\ln\frac{r}{r_c}) = \ln\frac{r}{r_c} - \frac{3}{10}\ln^2\frac{r}{r_c} + \frac{3}{40}\ln^3\frac{r}{r_c} - \frac{63}{4400}\ln^4\frac{r}{r_c} \dots$$
(divergent beam)

$$G(u) = -\ln\frac{r}{r_c} + \frac{3}{10}\ln^2\frac{r}{r_c} - \frac{3}{40}\ln^3\frac{r}{r_c} + \frac{63}{4400}\ln^4\frac{r}{r_c} \dots$$

1

(convergent beam)

 $G(u) = \ln\frac{r_c}{r} + \frac{3}{10}\ln^2\frac{r_c}{r} + \frac{3}{40}\ln^3\frac{r_c}{r} + \frac{63}{4400}\ln^4\frac{r_c}{r} \dots$ (convergent beam)

$$V = \left(\frac{4}{9}K'\right)^{2/3}G^{4/3}(u)$$

$$K' = \frac{I_0}{4\pi\varepsilon_0(2|\eta|\varepsilon_0)^{1/2}}$$

Langmuir and Blodgett's relation that can be used in the synthesis of convergent Pierce gun