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Potential distribution in a planar diode in the region between two large

conducting plates separated by a small distance d and kept at difference of

potential V0. The plate at higher potential V=V0 is the anode. The plate at lower

potential V=0 is the cathode.
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The broken line shows the linear variation of potential in the absence of

space charge. The line with crosses gives the variation of potential in the

presence of space charge considering a zero velocity of emission at the

cathode showing a zero slope at the cathode. The solid line gives the

potential variation in the presence of space charge considering a finite

velocity of emission at the cathode showing a voltage minimum and zero

slope at the virtual cathode.
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Under the space-charge limited condition, the number of electrons in flight

between the cathode and the anode is such that the effect of the negative

space-charge field due to them at the cathode is neutralized by that of the

electrostatic field due to the positive potential applied on the anode. The

electrons in excess over this number are repelled back into the cathode.

This would correspond to a zero slope in the potential variation, and hence

to a zero electric field intensity, at the cathode.
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The electric flux lines would terminate on the electrons rather than thread into

the cathode. The distribution of potential in this case is shown as the line

with crosses in the accompanying figure. If the slope of potential variation is

positive, more electrons would leave the vicinity of cathode which would

increase the negative space charge in the region and hence depress the

potential distribution curve towards the zero slope at the cathode. On the other

hand, if the slope overshoots to a negative value, the emitted electrons would

be forced back to the cathode which would reduce the negative space charge in

the region and consequently lift the potential distribution curve to have a zero

slope at the cathode.
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Solution of Poisson’s equation under the 

potential distribution at equilibrium 

corresponding to a zero slope at the cathode

Potential distribution in the cathode-

anode region. The line with crosses 

gives the variation of potential in the 

presence of space charge 

considering a zero velocity of 

emission at the cathode and showing 

a zero slope at the cathode (z=0) held 

at zero reference potential (V=0).

Potential distribution in the planar diode in the presence of space-charge
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If we increase the distance d between the cathode and the accelerating anode

of a diode to provide a hypothetical interaction region and accommodate an

interaction structure between them, then the beam current I0 would reduce to

an insignificant value, according to the Child-Langmuir’s relation.

With the help of an electron gun, we form an electron beam of the desired beam

voltage, current and cross-sectional area with the help of an electron gun and

throw it into the interaction region and accommodated an interaction structure

between them, then the beam current would reduce to an insignificant value.
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Langmuir and Blodgett’s relation that

can be used in the synthesis of

convergent Pierce gun


