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Engineering Electromagnetics Essentials

Chapter 9

Waveguides: solution of the wave equation 

For a wave in a bounded medium



2

Objective

Topics dealt with

To solve wave equation and study propagation of electromagnetic wave through 

bounded media, namely hollow-pipe waveguides, and predict their 

characteristics   

Solution of the wave equation of a rectangular waveguide in transverse electric (TE) 

mode for all the field components 

Characteristic equation or dispersion relation of a rectangular waveguide excited in 

transverse electric (TE) mode in terms of wave frequency, wave phase propagation 

constant and waveguide cutoff frequency

Dependence of waveguide cutoff frequency on waveguide dimensions with 

reference to a waveguide excited in TE mode

Characteristic parameters namely phase velocity, group velocity, guide wavelength 

and wave impedance and their dependence on wave frequency relative to 

waveguide cutoff frequency

Evanescent mode in a waveguide

Dimension-wise and mode-wise operating frequency criteria
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Excitation of a rectangular waveguide in transverse magnetic (TM) mode 

Significance of mode numbers vis-à-vis field pattern  

Cylindrical waveguide 

Inability of a hollow-pipe waveguide to support a TEM mode 

Power flow and power loss in a waveguide 

Power loss per unit area, power loss per unit length and attenuation constant there from

Background

Maxwell’s equations (Chapter 5), electromagnetic boundary conditions at conductor-

dielectric interface (Chapter 7), basic concepts of electromagnetic power flow 

(Chapter 8) and those of circuit theory 

3
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A ‘waveguide’ is a hollow metal pipe used to ‘guide’ the transmission of an electromagnetic 

‘wave’ from one point to another. 

It is a microwave-frequency counterpart of the lower-frequency connecting wire. 

It is thus essentially a type of transmission line, some of the other types being the two-wire 

line, the coaxial cable, the parallel-plate line, the stripline, the microstrip line, etc.  

We have seen that a transverse electromagnetic wave (TEM) mode of propagation is 

supported by a free-space medium with a phase velocity equal to the velocity of light c. 

Can a TEM mode be supported by a hollow-pipe waveguide? Would the phase velocity of 

a wave propagating through such a waveguide be the same as or different from c?  

We can answer to such question and many others concerning the characteristics of a 

waveguide with the help of  electromagnetic analysis of the waveguide. 

Such an analysis is based on setting up the wave equation in electric and magnetic fields 

in the waveguide and solving them with the help of relevant electromagnetic boundary 

conditions.     

We take up here for analysis two types of waveguides, namely rectangular  and cylindrical  

or circular waveguides which have rectangular and circular cross sections respectively 

perpendicular to the direction of wave propagation.       
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Rectangular waveguide

Rectangular waveguide can be treated in rectangular system of coordinates in view of the 

rectangular symmetry of its geometry. The waveguide will be considered for both TE and TM 

modes of excitation. (We will see later the inability of the hollow-pipe waveguides to support 

TEM mode of propagation). 

The TE mode is also known as the H mode since it is associated with a non-zero value of 

the axial magnetic field: 

The TM mode is also known as the E mode since it is associated with a non-zero value of 

the axial electric field: 
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Wave equations



66

(rewritten)
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wall at y = b.

TE mode

mode) (TE   )0,0(
2

2

002

2

2

2

2

2

=



=




+




+




zz

zzzz EH
t

H

z

H

y

H

x

H


)(exp ztj  −

jt = /

jz −= /












−===




−==−−=




zzz
z

zzz
z

HHjHjj
t

H

HHjHjj
z

H

222

2

2

222

2

2

))((

))((





Field quantities varying as

zz
zz HH

y

H

x

H 2

00

2

2

2

2

2

 −=−



+





0)( 22

2

2

2

2

=−+



+




z

zz Hk
y

H

x

H


constant)n propagatio

 space-(free

  )( 2/1

00=k

(wave equation 

rewritten)

(wave equation)



77

x

X
Y

x

H z




=





XYH z =

Field solutions

Let us use the method of separation of variables for solving wave equation

0)( 22

2

2

2

2

=−+



+




z

zz Hk
y

H

x

H
 (wave equation rewritten)

X is a function of only x

2

2

2

2

x

X
Y

x

H z




=





0)( 22

2

2

2

2

=−+



+




XYk

y

Y
X

x

X
Y 

2

2

2

2

y

Y
X

y

H z




=





Y is a function of only y

y

Y
X

y

H z




=







88

a

b

Z

Y

X

0)( 22

2

2

2

2

=−+



+




XYk

y

Y
X

x

X
Y  (rewritten)

)(
11 22

2

2

2

2

−−



−=




k

y

Y

Yx

X

X

Dividing by XY and rearranging terms

Equates a function of x alone in its 

left-hand side with a function of y

alone on its right-hand side. This 

can happen only when the individual 

functions of x and y are constants. 

2

2

21
A

x

X

X
−=



 222

2

2

)(
1

Ak
y

Y

Y
−=−−




− 

2222

2

2

)(
1

BkA
y

Y

Y
−=−−=






A2 is a constant

B2 is a constant



99

)(exp)sincos)(sincos( 4321 ztjByCByCAxCAxCH z  −++=

ByCByCY sincos 43 +=AxCAxCX sincos 21 +=

(rewritten) (rewritten)2

2

21
A

x

X

X
−=



 2

2

21
B

y

Y

Y
−=





Solution

C1 and C2 are constants    

C3 and C4 are constants

XYH z =

Invoking the factor exp j(t - z) 

which was otherwise understood

(transverse components of the electric field and  magnetic field components) 

Maxwell’s equations

yxyx HHEE , and ,
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Expanding the curl in rectangular system 
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We will recall the above relations of proportionality in the electromagnetic 

boundary conditions at the walls of the waveguide in the analysis to follow.   

Electromagnetic boundary condition at the waveguide wall:
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 0,0 21 == CC



18

 0

 I) (Situation 0,0

2

1

=

=

C

AC
leads to the contradiction with the TE-mode condition  

(left side wall at x = a)

0 besides 0,0 21 = CCA

Therefore, in  order to avoid this contradiction  in Situation I let us put

(Situation I)

(left side wall at x = a)

)ofvaluesallfor(

0)sincos)(cossin)(( 4321

y

ByCByCAxACAxAC
x

H z =++−=




0sin =Aa

(rewritten)
(left side wall at x = a)

...),3,2,1( == mmAa 

(m = 0 that makes A = 0 is excluded  to 

avoid contradiction with A ≠ 0 taken here)I)Situation(...),3,2,1( == m
a

m
A



I)Situation(...),3,2,1(with 

)(exp)sincos)(cos( 431

==

−+=

m
a

m
A

ztjByCByCAxCH z






19

Similarly we can proceed recalling Situation II: 0,0 2 = CA

)(exp)sincos)(( 431 ztjByCByCCH z  −+=

II)Situation()ofvaluesallfor( y

)(exp)sincos)(sincos( 4321 ztjByCByCAxCAxCH z  −++=

(recalled)

Tacitly expressed as 

)(exp)sincos)(cos( 431 ztjByCByCAxCH z  −+=

II)Situation()0( nginterpreti == m
a

m
A



II)Situation()0(with 

)(exp)sincos)(cos( 431

==

−+=

m
a

m
A

ztjByCByCAxCH z




19
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I)Situation(...),3,2,1(with 

)(exp)sincos)(cos( 431

==

−+=

m
a

m
A

ztjByCByCAxCH z




II)Situation()0(with 

)(exp)sincos)(cos( 431

==

−+=

m
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m
A

ztjByCByCAxCH z




(rewritten)

(recalled)
Combining

...),3,2,1,0(with 

)(exp)sincos)(cos( 431

==

−+=

m
a

m
A

ztjByCByCAxCH z


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)ofvaluesallfor( y

)ofvaluesallfor( y

20

We have so far considered electromagnetic boundary conditions at the left and right 

sidewalls of the rectangular waveguide. Let us next  turn towards electromagnetic 

boundary conditions at the top and bottom walls of the rectangular waveguide. 
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0)( =+ yyxxy aEaEa
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0)( =+− yyxxy aEaEa


0)(2 =+= yyxxnn aEaEaEa


0=zxaE
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yn aa
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0=− zxaE


0at   )0(0 == yaxEx byaxEx == at   )0(0
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H
E z
x






0at   )0(0 ==



yax

y

H z byax
y

H z ==



at   )0(0

(recalled)

(bottom wall) (top wall)

(electromagnetic boundary condition at the bottom and top walls of the rectangular waveguide)
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0at   )0(0 ==



yax

y

H z byax
y

H z ==



at   )0(0

(bottom wall) (top wall)

)cossin)(sincos( 4321 ByBCByBCAxCAxC
y

H z +−+=




...),3,2,1,0(with 

)(exp)sincos)(cos( 213

==

−+=

n
b

n
B

ztjAxCAxCByCH z





Hence using the same procedure as followed earlier, which starts from the boundary conditions 

at the left and  right side walls, we can obtain, now starting from the boundary conditions at the 

bottom and top walls, the following expression: 

)ofvaluesallfor( x
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...),3,2,1,0(with 

)(exp)sincos)(cos( 213

==

−+=

n
b

n
B

ztjAxCAxCByCH z


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)ofvaluesallfor( x

We have obtained the following:

...),3,2,1,0(with 

)(exp)sincos)(cos( 431

==

−+=

m
a

m
A

ztjByCByCAxCH z





)ofvaluesallfor( y

When combined, these two expressions for Hz, while remembering that the former is valid for all 

values of y and that the latter for all values of x, prompt us to take the factor cosAx from the 

former and the factor cosBy  from the latter in the field expression to write it as

...),3,2,1,0,(,with )(expcoscos0 ===−= nm
b

n
B

a

m
AztjByAxHH zz




)(exp)cos)(cos( 31 ztjByCAxCHH zz  −==

310 Putting CCH z =

...),3,2,1,0,(, === nm
b

n
B

a

m
A
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...),3,2,1,0(...);,3,2,1,0(with 
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(rewritten)
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(rewritten)

(rewritten)
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...),3,2,1,0,()(exp)cos()sin(022
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−= nmztjy
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m
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E zy 
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



2222 )( BkA −=−− 

(rewritten)

(rewritten)

(introduced earlier while solving the wave equation 

by the method of separation of variables)

2222 BAk +=− 
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yx EH
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Field expressions of a rectangular waveguide excited in the TEmn mode put together
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(m and n are the mode numbers of the rectangular waveguide excited in the TEmn mode) 
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Characteristic equation or dispersion relation of a rectangular waveguide excited in the TE mode
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(dispersion relation) 

(- relationship with reference to a rectangular waveguide excited in the TE mode)   
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Dispersion relation 
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the waveguide which meets the c-line at  → , the latter 

shown as a dotted line having positive and negative slopes of 

magnitude equal to the velocity of light c for the positive and 

the negative values of  respectively. The intercept of the 

dispersion curve with the  axis gives the cutoff frequency c.

(recalled)

(characteristic equation of the waveguide)

Dispersion curve: a hyperbola 
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In general, there will be two values of 
for a given value of  −one positive 

and the other negative. 
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Waveguide a (inch) b (inch) c (mm) fc(=c/2a) (GHz)

WR-2300 23 11.5 1168.4 0.257

WR-340 3.4 1.7 172.72 1.737

WR-284 2.84 1.34 144.27 2.08

WR-137 1.372 0.62 69.70 4.30

WR-112 1.122 0.497 57.0 5.26

WR-90 0.9 0.4 45.72 6.56

WR-3 0.034 0.017 1.73 173.7

Typical waveguide dimensions 

and corresponding cutoff 

frequencies (fc) and cutoff 

wavelengths (c) for the TE10

mode for typical commercial 

rectangular waveguide types 

Waveguide

Waveguide modes in order of increasing cutoff 

frequency (fc) shown in parenthesis against the 

modes  

WR-2300

TE10 (0.257 GHz)

TE20/ TE01 (0.51 GHz)

TE11 (0.61 GHz)

WR-284

TE10 (2.08 GHz)

TE20 (4.16 GHz)

TE01 (4.41 GHz)

TE11 (4.87 GHz)

WR-90

TE10 (6.56 GHz)

TE11 (9.88 GHz)

TE20 (13.1 GHz)

TE01 (14.76 GHz)

Modes in order of increasing 

cutoff frequency for typical 

commercial rectangular 

waveguide types
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Wave group velocity

We have already defined the phase velocity of a wave vph that involves the phase propagation 

constant , which, in turn, occurs in the representation of a wave associated with a physical 

quantity, for instance, the electric field:   

)(exp0 ztjEE  −=

 velocityphase /

/constantn propagatio phase

  amplitude field  

ph

ph

0

==

==

=





v

v

E

However, the phase velocity has a meaning only with reference to an infinite monochromatic 

wave train. 

In order to convey information, we have to resort to a group of wave trains at different 

frequencies the form a finite wave train or a wave packet, say, in the form of a modulated wave 

such that the modulation envelope contains the information to be conveyed. 

The velocity of the wave packet or group of waves is called the group velocity of the wave, which 

also represents the velocity with which the energy is transported. 

We may then find the group velocity as the velocity of the amplitude of the group of waves in the 

wave packet. Through any medium, which, in general, is dispersive, the wave components of the 

group travel with different phase velocities.

In what will follow, we are going to show, considering 

two components of the wave packet, that the wave 

group velocity vg can be found from the relation:







=gv
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])()[(exp])()[()[exp(exp0 ztjztjztjEE  −+−−−=

])()[([exp])()[([exp 00 ztjEztjEE  +−++−−−=

constant=− zt 

Let us consider two components of the wave packet ⎯ one at  -  and the other at  + , 

which are separated in frequency by 2 with phase propagation constants   -  and  + 
respectively.

Considering the magnitudes of the two 

electric field components to be the same for 

the sake of simplicity 

 sincosexprelation   theof In view jj =

)(exp)cos(2 0 ztjztEE  −−=

0=−
dt

dz


The amplitude of the electric field of the combination 

of the wave components of the group has the wave-

like variation with distance and time appearing in the 

cosine function.

Putting the argument of the cosine function as constant in 

order to find the wave group velocity vgDifferentiating








=

dt

dz








=gv

For small values of 
in the limit (wave group velocity)
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The group velocity vg of the waveguide can be found from the relation




=phv

022 2 =−








 c

The slope of the - dispersion curve of the waveguide at 

any point represents the group velocity of the waveguide at 

the point while the slope of the line joining the point and the 

origin of the curve represents the phase velocity of the 

waveguide.  

Taking the partial derivative
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You will surely enjoy an illustrative example in which we will find the length of the 

waveguide of cutoff wavelength 69.70 mm that will ensure that a signal at 8.6 GHz 

emerging out of the guide  is delayed by 1 μs with respect to the signal that 

propagates outside the waveguide.  
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Evanescent mode

c

c

2/122 )( 

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= (recalled)

For frequencies above the cutoff  frequency: >c, the phase propagation constant  becomes positive real,  

which occurring in the phase factor  exp j(t-z) and, in turn, in the expressions for the RF quantities, refers 

to a ‘propagating’ wave through the waveguide along positive z. 

Taking the upper sign
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Let us now take frequencies less than the cutoff frequency: <c  and take the phase factor as exp j(t-z) :
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Phase factor occurring in field expressions taking the positive lower sign in :
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
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Non-propagating evanescent mode  )( c 
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(Non-propagating evanescent mode)  

Phase factor occurring in field expressions 
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)( c 

The field amplitude decays exponentially with the axial distance z as exp(- z) for <c.  is known as 

the attenuation constant in this non-propagating mode called the evanescent mode (corresponding to 

non-propagating mode vanishing). 

Power consideration in this mode is taken up later. 
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Taking complex conjugate

Following the same procedure we can write
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The average Poynting vector  being thus zero, we infer that there would be no power flow in the 

waveguide in the evanescent mode below cutoff (<c). The waveguide in this mode acts as a 

reactive load such that the power oscillates back and forth between the source and the 

waveguide.                 . 
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Let us take up a simple numerical example to show that a rectangular waveguide of 

cross-sectional dimensions 2.5 cm × 1 cm can support typically the propagating mode 

TE10 and the evanescent mode TE01 at 10 GHz operating frequency.
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Thus, the waveguide can support non-propagating evanescent mode TE01 and the 

propagating mode TE10
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What will be the nature of the attenuation constant versus frequency plot of a waveguide 

in the evanescent mode? 
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The plot of  versus  becomes an ellipse. The intercept of the ellipse on the  axis 

(ordinate), corresponding to  = 0, is found to be c//c. Similarly, the intercept  of the ellipse 

on  axis (abscissa), corresponding to  = 0, is found to be c. 
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TM mode
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The method of analysis of the rectangular waveguide excited in the TM mode           

closely follows that of the waveguide excited in the TE mode                            ⎯the 

latter already presented. We can then obtain the TM-mode expressions using the 

same steps as that followed while obtaining the TE-mode expressions as follows. 

)0,0( = zz HE

)0,0( = zz EH

TE-mode expressions already 

developed in steps

Corresponding TM-mode expressions 

that follow 

2

2

002

2

2

2

2

2

t

H

z

H

y

H

x

H zzzz




=




+




+






0)( 22

2

2

2

2

=−+



+




z

zz Ek
y

E

x

E


)(exp)sincos(

)sincos(

43

21

ztjByCByC

AxCAxCH z

 −+

+=



50

TE-mode expressions already 

developed

Corresponding TM-mode expressions 

that follow
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TE-mode expressions already 

developed

Corresponding TM-mode expressions 

that follow
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TE-mode expressions already 

developed
Corresponding TM-mode expressions 

that follow
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Dominant mode of a rectangular waveguide

• The cutoff frequency of the TE10 mode is the lowest of all other modes. 

• If we choose the operating frequency of the waveguide above the cutoff frequency of the

TE10 mode, then the TE10 mode will propagate through the waveguide. Also, any next higher

order mode will co-propagate if its cutoff frequency is lower than the operating frequency.

• For instance, let the operating frequency be 4.5 GHz for waveguide WR-284. This is higher

than the cutoff frequencies of TE10, TE20, and TE01 modes , which are respectively 2.08 GHz,

4.16 GHz, and 4.41 GHz, but lower than the cutoff frequency 4.87 GHz of TE11. ( See slide

number 33 for dimensions and cutoff frequencies of waveguide WR-284.)

• Therefore, at the operating frequency of 4.5 GHz, waveguide WR-284 will allow propagation 

of TE10, TE20, and TE01 but makes mode TE11 evanescent, attenuating  it.

• Thus, TE10 mode (which has the lowest cutoff frequency of all the modes) will be excited in a

rectangular waveguide if the operating frequency is higher than its cutoff frequency irrespective

of whether any other modes are exited or not. Hence the TE10 mode is called the dominant

mode of a rectangular waveguide.

• If the operating frequency is chosen at 3 GHz for waveguide WR-284, which is above the

cutoff frequency 2.08 GHz of the dominant mode TE10 but below the cutoff frequency 4.16 GHz

of TE20, then only the mode TE10, which is the dominant mode, will be excited in the

rectangular waveguide.

• Moreover, the cutoff frequency of the TE10 mode is the lowest of the cutoff frequencies of all 

the TE and TM modes taken together and continues to be called the dominant mode with due 

consideration to the excitation of the waveguide in both the TE and TM mode types.
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Starting from the expression for Ez and taking help from Maxwell’s equations, we can find the transverse 

electric and magnetic field components in the TM mode as we have obtained earlier in the TE mode. 

Thus, we obtain the field expressions for the TMmn mode as follows:  
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(TMmn-mode field expressions of a rectangular waveguide)
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Field pattern and significance 

of mode numbers of a rectangular waveguide 
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Expressions for non-zero field components of a rectangular waveguide for 

typical lower-order modes TE10, TE10, TE20 and TM11:  
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a
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TE10 mode
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TE20 mode
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x

y
z

TM11 mode

Field pattern of typical lower-order 

rectangular waveguide modes

The field pattern of the rectangular waveguide has been more elaborately explained in the book. 

However, in what follows next, let us discuss the significance of the mode number vis-à-vis the 

field pattern. 
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Significance of the TEmn-mode or TMmn-mode field patterns of a rectangular waveguide 

vis-à-vis the mode numbers m and n

It is easy to infer by examining field patterns that 

• mode number m,  the first suffix of TEmn or TMmn, indicates the number of maxima of any 

field component, electric or magnetic, along the broad dimension of the waveguide

• mode number n, the second suffix of TEmn or TMmn, indicates the number of maxima of 

any field component, electric or magnetic, along the narrow dimension of the waveguide

Alternatively, m and n can be interpreted as the numbers of half-wave field patterns across the 

broad and narrow dimensions of the waveguide respectively.
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Examples:  

For TE10 mode (m = 1, n = 0), the first suffix

being unity (m = 1), there is a single

maximum of the field component along the

waveguide broad dimension. The second

suffix being zero (n = 0), there is no maximum

of the field component along the waveguide

narrow dimension.

For TE20 mode (m =2, n = 0), the first suffix

being 2 (m = 2), there exist two maxima of the

field component along the waveguide broad

dimension. The second suffix being zero (n =

0) there is no maximum of the field

component along the waveguide narrow

dimension.

Similar observations can be made by

examining the field pattern of the TMmn mode,

for instance, the TM11 mode as well.

a

b

a

b

x

y
z

TE10 mode

TE20 mode

TM11 mode

a

b

Later on we are going to make similar 

inferences on the significance of mode numbers 

vis-à-vis field pattern with respect to a cylindrical 

waveguide.
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Cylindrical waveguide

Cylindrical or circular waveguide can be treated in cylindrical system of coordinates (r,,z) in 

view of the circular symmetry of this type of waveguide.

rθ

X

Y

Z

O

Z

For a cylindrical waveguide it turns out that the dominant 

mode is the TE11 mode characterized by having the lowest 

cutoff frequency. Let us emphasize here mainly the TE11 mode 

for analysis, although the analytical approach presented here 

is rather general and is easily applicable to the analysis of 

other higher order TEmn and TMmn modes as well. 
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Expanding Laplacian in cylindrical 
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Carrying out the differentiation of the first term 

In view of the field dependence exp j(t-z) which is understood, 

enabling us to put /t = j and /z = - j

Rearranging terms 
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Let us use the method of separation of variables for solving the wave 

equation and put 

alone  offunction  a is 

and alone  offunction  a is 



rR
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Equates a function of r alone on its left hand side with a function of 
alone on its right hand side. This can hold good only when the 

individual functions each become equal to a constant. 

Putting this constant as 
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for  Solve

We can obtain the expression for the axial component of magnetic field Hz from the solution of its 

components R and :
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Well known solution

Bessel equation

Well known solution

C and D are constants

P and Q are constants.

Jm(x) is the mth order ordinary Bessel 

function of the first kind.

Ym(x) is the mth order Bessel function of 

the second kind.
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The value of  at angle  would be the 

same as that at an angle  + 2 (the radial 

coordinate r remaining unchanged) 

a relation that shall hold good only for integral 

values of m, that is, for m = 0, 1, 2, 3, ….

)cos(  −= mM (rewritten)

Choosing ψ = 0  that amounts to taking the 

reference of  such that it corresponds to the 

maximum value  = M at  = 0

which in turn would make

 0 as  →→ xR

which is an impossibility since the field 

cannot shoot up to infinity at x (= r) → 0, 

that is at r → 0 (axis of the waveguide).

In order to prevent this impossibility we 

must put the constant Q = 0 in the 

expression for R.
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Invoking the understood factor )(exp ztj  −

Next we can find the rest of the field expressions with the help of the 

above axial component of magnetic field and the two of the following 

Maxwell’s equations:
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(Maxwell’s equations)
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Eliminating Hr and E

respectively

Eliminating Er and H

respectively
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Field expressions of a cylindrical waveguide excited in the TEmn mode put together

)(expsin)(02

0 ztjmrJH
r

mj
E mzr 




−=

)(expcos)(0
0 ztjmrJH

j
E mz 




 −=

0=zE

)(expcos)(0 ztjmrJH
j

H mzr 



−

−
=

)(expsin)(02
ztjmrmJH

r

j
H mz 




 −=

)(expcos)(0 ztjmrJHH mzz  −=

(m and n are the mode numbers of the cylindrical waveguide excited in the TEmn mode) 
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Electromagnetic boundary conditions at the waveguide wall of 

a cylindrical waveguide

Boundary condition at the interface between a conductor and 

a dielectric/free-space introduced in Chapter 7, here the 

interface being the conducting waveguide wall of radius r = a, 

the subscript 2 referring to the free-space region inside the 

waveguide

Unit vector directed from region 1 (here, conducting 

waveguide wall) to region 2 (here, free-space region 

inside the waveguide), thus being radially inward at 

the waveguide wall
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(electromagnetic boundary 

condition at the conducting 

wall of the waveguide)
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has a number of zeros or roots corresponding 

to its multiple solutions 

(corresponding to the nth zero or root, 

where Xmn is called the eigenvalue of 

the cylindrical waveguide excited in 

the mode TEmn) 
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mnXa = (corresponding to the nth zero or root, where Xmn is called the 

eigenvalue of the cylindrical waveguide excited in the mode TEmn) 
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(a few lower order eigenvalues of the roots taken 

from easily available text on Bessel functions, the 

eigenvalue X11 = 1.841 corresponding to m =1, n

=1 for the TE11 mode being the lowest of them)

Dispersion relation and cutoff frequency of a cylindrical waveguide 
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(dispersion relation)
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0
2222 =−− cc 

Dispersion relation of a cylindrical waveguide is 

the same as that of a rectangular waveguide 

with appropriate interpretation of the waveguide 

cutoff frequency. 

(rewritten)

Obviously, the nature of the - dispersion 

curve of a a cylindrical waveguide is identical 

with that of a rectangular waveguide.

2 2 2 2 0cc  − − =
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c 
- l

in
e

a

cXmn
c =

Dominant mode of a cylindrical waveguide

For a cylindrical waveguide, here considered as excited in the TE mode, we have seen that 

the TE11 mode has the lowest eigenvalue X11 = 1.841 and correspondingly the lowest cutoff 

frequency c = Xmnc/a = 1.841c/a. 

In fact, the analysis in the TM mode (which, though presented earlier for a rectangular 

waveguide, has not been done here for a cylindrical waveguide) would reveal that, of all the 

modes of the TE and TM modes of a cylindrical waveguide taken together, the TE11 mode has 

the lowest cutoff frequency. 

Therefore, 

TE11 mode is the dominant mode in a cylindrical waveguide

TE10 is the dominant mode is in a rectangular waveguide.       
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In an illustrative example you will find it of interest to compare the cross-sectional area of a 

circular or cylindrical waveguide with that of a rectangular waveguide that has its wider 

dimension twice its narrower dimension and that has its cutoff frequency the same as that of 

the rectangular waveguide, taking both the waveguides excited in the dominant mode. 
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Dominant mode: m =1, n = 0

(cross-sectional area of the given rectangular 

waveguide in terms of the cutoff frequency, 

the latter being the same as that of the given 

circular or cylindrical waveguide in the 

example)
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Dominant mode: m =1, n = 1
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Field pattern and significance 

of mode numbers of a cylindrical waveguide 
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Field expressions of a cylindrical waveguide for typical lower-order modes TE01, 

TE02 and TE11 (interpreting the TEmn-mode field expressions already deduced):    

(recurrence relation 

taking help of)

(TE01 mode) 
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(TE02 mode) 
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Field pattern of typical lower-order 

cylindrical waveguide modes

The field pattern of the cylindrical waveguide has been more elaborately explained in the book. 

However, in what follows next let us discuss the significance of the mode number vis-à-vis the field 

pattern of a cylindrical waveguide.  



Significance of mode numbers of a cylindrical waveguide 

TE01 mode:

mode number m = 0   no half-wave field patterns around the half circumference

mode number n =1  one field maximum across the waveguide radius

approximately mid-way between the axis and the wall of the waveguide

TE02 mode:

mode number m = 0  no half-wave field patterns around the half circumference

mode number n = 2  two maxima across the waveguide radius, between the

axis and the wall of the waveguide, such that if one of the maxima is positive the

other is negative.

TE11 mode:

mode number m = 1  a single half-wave field pattern around the half

circumference (or a single full-wave field pattern around the full circumference) of

the waveguide

mode number n =1   across the waveguide radius, a single maximum at the axis 

of the waveguide 

Based on the observation for the TE11 mode, TE01 and the TE02 modes above, the

meaning of the mode numbers of a cylindrical waveguide excited in the TEmn mode

is

• m (azimuthal mode number) is the number of half-wave field patterns 

around the half waveguide circumference; 

• n (radial mode number) is the number of maxima, positive and negative

inclusive, across the waveguide radius.

Such interpretation is valid for the TMmn mode as well.

D

C

B

A

(TE01 mode)

(TE02 mode)

(TE11 mode)
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The TEM mode is characterized by transverse electric and magnetic fields and no axial electric

and magnetic field components (Ez = Hz = 0).

However, for continuous magnetic field lines to exist in a hollow-pipe waveguide, there should

be an axial current present in the waveguide in the form of either conduction or displacement

current in the axial direction.

The absence of a conductor does not allow such conduction current in the axial direction.

Further, for the displacement current in the axial direction to exist in the waveguide, there

should be an axial electric field, the time variation of which being responsible for such current.

However, the TEM mode does not permit the axial electric field. Therefore, a hollow-pipe

waveguide cannot support the TEM mode.

On the other hand, a two-conductor structure comprising a hollow cylindrical waveguide with a

conducting coaxial solid circular rod insert, known as a coaxial waveguide, can support the

TEM mode.

Inability of a hollow-pipe waveguide to support a TEM mode:
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Power Flow and power loss 

in a waveguide

We can find power transmitted in the axial direction z of a rectangular waveguide by

integrating the axial z-component of the average complex Poynting vector (see Chapter 8):
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***)( xyyxz HEHEHE −=


over the waveguide cross-sectional area (= ab) transverse to the axis z of the 

waveguide as follows:
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(power  transmitted in the axial direction z of a rectangular waveguide)

(recalled)

Restricting the analysis to the dominant mode TE10

(TE10 mode)

)(
22

1 2

0
0 b

a
H
aa

P z 







=









bdy
a

dx
a

x
ax

x

by

y

== 
=

=

=

=0 0

2 ;
2

sin


2

0

3

024

1
zbHaP 


= (TE10 mode)

(power  transmitted in the axial direction z of a rectangular waveguide)



84

2

0

3

024

1
zbHaP 
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=

(power handling capability of the rectangular 

waveguide in the dominant TE10 mode)

Power handling capability of a waveguide

(power  transmitted in the axial direction z of a rectangular waveguide)
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Let us take a rectangular waveguide excited in the dominant TE10 mode.

(dominant-mode TE10 field expressions)   (recalled)

Let us find an expression for the maximum permissible Pmaximum, that is, the power handling 

capability of the waveguide for a known magnitude of the maximum electric field amplitude 

which the atmosphere of the inside of the waveguide can withstand before it breaks down. 

2

maximun
0

maximum )(
4

1
yEabP 
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maximunyE

(axial magnetic field amplitude in terms of the breakdown electric field) 
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m.1054.27.17.1  and  m 1054.24.34.3 22 −− ==== ba
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In an illustrative example let us calculate the maximum power handling capability of WR-

340 rectangular waveguide, excited in the dominant mode, operating at 3 GHz frequency, 

taking the breakdown limit of air as 29 kV/cm and taking the waveguide dimensions as:
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GHz 737.1Hz10737.1 6 ==cf
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c
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=

Recalling the expression for the cutoff frequency of a rectangular waveguide in the 

dominant mode, we can calculate:

 m 1054.24.34.3 2−==a (dominant mode: m =1, n = 0)
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Power loss per unit area and power loss per unit length of a rectangular waveguide 

Power loss per unit area at a conducting surface here the interface between the 

conducting wall and the inside of the rectangular waveguide is given by (see Chapter 8) 

density current  surface 

  resistance surface

areaunit per  losspower  LA

=

=

=

s

S

J

R

P



Surface current density at any of the four waveguide walls can be found from the following 

electromagnetic boundary condition at the concerned waveguide wall:  

Recalling (from Chapter 7) the electromagnetic boundary condition at 

the interface between region 2, here the free-space region inside the 

waveguide wall, and region 1, here the conducting wall region  

Let us next find the surface current densities developed at the right side wall (x = 0), 

left side wall (x = a), bottom wall (y = 0) and top wall (y = b) respectively.  

a

b

Z

Y

X

  inside) space-(free 2region   to wall)g(conductin

 1region   waveguide thefrom directed

runit vecto  theis na
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Similarly, we can derive next an expression for the surface current density developed at the 

left side wall. 
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Next, let us derive next an expression for the surface current density developed at the 

bottom wall. 

(TE10 mode)
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Next, let us derive next an expression for the surface current density developed at the top 

wall. 
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Expressions for surface current densities at the waveguide walls are required to find power loss per unit 

area PLA in terms of their surface resistance RS for each of these walls with the help of the expression:
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Using the expressions for the surface current densities and those of their complex conjugates already 

presented, which are involved in the expression for power loss per unit area PLA, we can write the 

following expressions with respect to all the four sides of the waveguide wall: 

We can next simplify the above expressions before they can be used in the expression for PLA. 
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We can then put together the expressions for power loss per unit area on all the four walls of the waveguide: 
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From the expression for power loss per unit area, we can also find power loss per unit length of the 

waveguide as follows. 
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Power loss per unit length PLL across the narrow 

dimension of the waveguide on its left sidewall 



96

dxdzx
a

x
a

a
HRdP zS 








+=





 22

2

22
2

0LL cossin
2

1
Element of power loss dPL over an element of strip of 

elemental thickness dz and elemental area dxdz

across the broad dimension of the waveguide on its 

bottom wall (y = 0) 
(bottom wall)

Power loss per unit length PLL across the broad 

dimension of the waveguide on its bottom wall 


=

=

=

=

+==

1

00

22

2

22
2

0LLwallbottomLL, )cossin(
2

1
z

z

ay

y

zS dzdxx
a

x
a

a
HRdPP















+= x

a
x

a

a
HRP zS





 22

2

22
2

0 wallbottomLA, cossin
2

1

(bottom wall)















+
=

−
=

2

2
cos1

cos

2

2
cos1

sin

2

2

x
ax

a

x
ax

a















+= 1

22

1
2

22
2

0wallbottomLL,


 aa
HRP zS

(using the relation

and evaluating the integral)



97

dxdzx
a

x
a

a
HRdP zS 








+=





 22

2

22
2

0LL cossin
2

1
Element of power loss dPL over an element of strip of 

elemental thickness dz and elemental area dxdz

across the broad dimension of the waveguide on its 

top wall (y = b) 
(top wall)

Power loss per unit length PLL across the broad 

dimension of the waveguide on its top wall 

 +==
=

=

=

=

1

00

22

2

22
2

0LLwalltopLL, )cossin(
2

1 z

z

ay

y
zS dzdxx

a
x

a

a
HRdPP




















+= x

a
x

a

a
HRP zS





 22

2

22
2

0 walltopLA, cossin
2

1

(top wall)















+
=

−
=

2

2
cos1

cos

2

2
cos1

sin

2

2

x
ax

a

x
ax

a















+= 1

22

1
2

22
2

0walltopLL,


 aa
HRP zS

(using the relation

and evaluating the integral)



98

Power loss per unit length of the rectangular waveguide adding contributions of all the four walls
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The above expression is useful in finding the expression for the attenuation constant of the waveguide.

=+=  j

Power loss caused by the finite resistivity of the waveguide wall may be accounted for by generalizing 

the dependence of field components as 

propagation constant

*

average Re2/1P HE


=

= phase propagation 

constant
= attenuation constant

The amplitude of the field 

component decreases 

exponentially with z, with the 

factor exp (-z)

Power P (z) transmitted through 

the waveguide decreases 

exponentially with z, with the 

factor exp (-2z)

See for instance average complex 

Poynting or power density vector 

involving the electric and magnetic field 

components each decreasing with the 

factor exp (-z) making their product 

depending on the factor exp (-2z)

(power transmitted 

through the waveguide)

(TE10 mode)
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)2exp()0()( zPzP −= (rewritten)
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Differentiating
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dropping the parenthesis from P(z)
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(in terms of the conductivity  and skin depth 

 of the material of the waveguide wall; see 

Chapter 6)
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(attenuation constant of the rectangular 

waveguide in the dominant TE10 mode)
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In a numerical example, let us calculate the attenuation constant of a rectangular 

waveguide  (a = 0.9// and b = 0.4//; cutoff frequency = 6.56 GHz) made of aluminum ( = 

35.4x106 mho/m) at the operating frequency 9 GHz in the dominant mode.















=

=

=

==

==

−

−

mho/m104.35

Hz1056.6

Hz109

m1054.24.04.0

m1054.29.09.0

6

9

9

2

2



cf

f

b

a




0

1

f
=

2/1

2

2

2

2

0

0

1

2
1

1














−

+

=

f

f

f

f

a

b

f

b
c

c








)(

1

2

1
2/1

2

2

2

2

0 a

ca

b

b
c

c

cc 















 =














−

+

=

After a simple algebra and recalling    (skin depth)

(TE10 dominant mode) 

(recalled)

(given)

154.00177.068.80177.0 ===Np/m dB/m0177.0=

ohm 3770 =

H/m 104 7
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−= 
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In another interesting problem, let us find the value of the wave frequency relative to

the cutoff frequency of a rectangular waveguide excited in the dominant mode that

results in the minimum attenuation due to the finite conductivity of the material of the

waveguide, in terms of the waveguide dimensions. Numerically appreciate the

problem taking a = 1.8b and fc = 6.56 GHz.

)//  nginterpreti (recalled ffcc =
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Can be rearranged as

Can be solved as
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✓ Waveguide⎯a hollow pipe made of a conducting material⎯is extensively

used for the transmission of power in the microwave frequency range.

✓ Waveguide can support transverse electric (TE) mode, which is

characterized by non-zero axial magnetic field and zero axial electric field

✓ Waveguide can also support transverse magnetic TM mode, which is

characterized by non-zero axial electric field and zero axial magnetic field.

✓ Waveguide behaves as a high-pass filter supporting propagating waves

above a cutoff frequency that is related to waveguide dimensions.

✓ TE-mode and TM-mode field solutions for both the rectangular and

cylindrical waveguides have been obtained.

✓ Characteristic equation or dispersion relation of a waveguide can be found

with the help of the field solutions and electromagnetic boundary condition that

the tangential component of the electric field is nil at the conducting surface of

the waveguide wall.

✓ One and the same dispersion relation is obtained between the wave

angular frequency  and phase propagation constant  of a waveguide for the

TE and the TM modes involving their respective cutoff frequencies c.

✓- dispersion plots of Identical nature are generated for rectangular and 

cylindrical waveguides excited in TE or TM mode. 

Summarising Notes
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✓ Cutoff frequency of the waveguide is the frequency  corresponding

to zero value of phase propagation constant  (which can be identified

as the point of intersection between the - dispersion plot and the

abscissa, that is, -axis of the plot).

✓ Cutoff frequency of the waveguide depends on the waveguide

dimensions and waveguide mode chosen.

✓ Characteristic parameters of a waveguide are guide wavelength,

phase propagation constant, phase velocity, group velocity and wave

impedance, each of them depending on the operating frequency

relative to the cutoff frequency of the waveguide.

✓ Evanescent mode is supported by a waveguide below its cutoff

frequency associated with no component of the average Poynting

vector in the direction of wave propagation, corresponding to no power

flow in the waveguide.

✓ Mode numbers m and n are subscripted in the nomenclatures TEmn

and the TMmn representing respectively the transverse electric and

transverse magnetic modes of the waveguide.

✓ Dominant mode of a waveguide is characterized by the lowest value

of the cutoff frequencies of all the TEmn and the TMmn modes of the

waveguide.

Dominant mode of a rectangular waveguide is the mode TE10.

 Dominant mode of a cylindrical waveguide is the mode TE11.
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✓ Mode numbers m and n of the TEmn and TMmn modes of a rectangular or

cylindrical waveguide can be correlated with their respective field patterns across

the waveguide cross section.

✓ For a rectangular waveguide, the mode number m indicates the number of

maxima (of any field component) along the broad dimension of the waveguide,

while the mode number n indicates the number of maxima (of any field

component) along the narrow dimension of the waveguide. Alternatively, you may

interpret m and n as the numbers of half-wave field patterns across the broad and

the narrow dimensions of the waveguide respectively.

✓ For a cylindrical waveguide, the mode number m indicates the number of half-

wave field pattern around the half circumference and n indicates the number of

positive or negative maxima across the waveguide radius

✓ Why a hollow-pipe waveguide cannot support transverse electromagnetic (TEM)

mode, for which the axial electric field and the axial magnetic field are each nil,

has been explained.

✓ Expression for the power propagating through a rectangular waveguide above

its cutoff frequency has been developed and hence the power handling capability

of the waveguide has been found in terms of the breakdown voltage of the

medium filling the hollow region of the waveguide for dominant-mode excitation of

the waveguide.
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✓ Expression for the power loss per unit length of the walls of a rectangular

waveguide due to the finite resistivity of the material making the walls has been

developed for dominant-mode excitation of the waveguide.

✓ Expression for the attenuation constant of a dominant-mode-excited

rectangular waveguide has been developed using the expressions for

propagating power and power loss per unit length of the waveguide.

✓ Attenuation constant of a waveguide depends on the operating frequency

and the waveguide dimensions which should be taken into consideration while

choosing the waveguide mode and frequency for lower waveguide attenuation.

Readers are encouraged to go through Chapter 9 

of the book for more topics and more worked-out 

examples and review questions. 


