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To solve wave equation and study propagation of electromagnetic wave through
bounded media, namely hollow-pipe waveguides, and predict their

characteristics @ Mﬁ'@

Solution of the wave equation of a rectangular waveguide in transverse electric (TE)
mode for all the field components

Characteristic equation or dispersion relation of a rectangular waveguide excited in
transverse electric (TE) mode in terms of wave frequency, wave phase propagation
constant and waveguide cutoff frequency

Dependence of waveguide cutoff frequency on waveguide dimensions with
reference to a waveguide excited in TE mode

Characteristic parameters namely phase velocity, group velocity, guide wavelength
and wave impedance and their dependence on wave frequency relative to
waveguide cutoff frequency

Evanescent mode in a waveguide

Dimension-wise and mode-wise operating frequency criteria



Excitation of a rectangular waveguide in transverse magnetic (TM) mode
Significance of mode numbers vis-a-vis field pattern

Cylindrical waveguide

Inability of a hollow-pipe waveguide to support a TEM mode

Power flow and power loss in a waveguide

Power loss per unit area, power loss per unit length and attenuation constant there from

 Badgiomnd

Maxwell’s equations (Chapter 5), electromagnetic boundary conditions at conductor-
dielectric interface (Chapter 7), basic concepts of electromagnetic power flow
(Chapter 8) and those of circuit theory




A ‘waveguide’ is a hollow metal pipe used to ‘guide’ the transmission of an electromagnetic
‘wave’ from one point to another.

It is a microwave-frequency counterpart of the lower-frequency connecting wire.

It is thus essentially a type of transmission line, some of the other types being the two-wire
line, the coaxial cable, the parallel-plate line, the stripline, the microstrip line, etc.

We have seen that a transverse electromagnetic wave (TEM) mode of propagation is
supported by a free-space medium with a phase velocity equal to the velocity of light c.

Can a TEM mode be supported by a hollow-pipe waveguide? Would the phase velocity of
a wave propagating through such a waveguide be the same as or different from c¢?

We can answer to such question and many others concerning the characteristics of a
waveguide with the help of electromagnetic analysis of the waveguide.

Such an analysis is based on setting up the wave equation in electric and magnetic fields
in the waveguide and solving them with the help of relevant electromagnetic boundary
conditions.

We take up here for analysis two types of waveguides, namely rectangular and cylindrical
or circular waveguides which have rectangular and circular cross sections respectively
perpendicular to the direction of wave propagation.
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Rectangular waveguide can be treated in rectangular system of coordinates in view of the
rectangular symmetry of its geometry. The waveguide will be considered for both TE and TM
modes of excitation. (We will see later the inability of the hollow-pipe waveguides to support
TEM mode of propagation).

The TE mode is also known as the H mode since it is associated with a non-zero value of
the axial magnetic field: H_ #0,E. =0.

The TM mode is also known as the E mode since it is associated with a non-zero value of
the axial electric field: E_#0,H_=0.

Wave equations

Wave equations have already been introduced in Chapter 6.
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Rectangular waveguide with its right side wall located at x = 0;
left side at x = a; bottom wall at y = 0 and top wall at y = b.
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H, H. H. H
° 2 T ’ 2 6 > = Moo 8—22 (H.#0,E.=0) (TEmode)
ox” Oy "o ot | ;
(wave equation (rewritten) bl
Field quantities varying as L
X

rewritten) \ ’ 22 PR T
exp j(wt—pz
\ \l Rectangular waveguide with its right

side wall located at x = O; left side at
0/0t=jow  X=a bottomwall aty =0 and top
8[—[ 5[—[ 00z =—i wall at y = b.
5)(2 ay _ﬂ H /uogoa)sz l ]IB
k= a)(ﬂogo)l/z 0°H 2 2 2 |
¢ > ==(—JP)-JPH,. = H =-fH,
(free-space Oz &
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2 2
a [{z +a [{z +(k2_ﬂ2)HZ :O
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(wave equation)




Field solutions

H_=XY — Letus use the method of separation of variables for solving wave equation

|

— X s a function of only x

|

. OH. _yoX | o'H,_ 00X
Ox ox x> ox’

A 4

A

— Yis a function of only y

A 4

A

2 2
> aHz:XG_Y — 8112@:)(812’
oy oy oy oy
2 2
0 HZ n 0 Hz +(k2 _,32)[_[ — () (wave equation rewritten)
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0°X 0°Y

Y . +X o +(k* = f*)XY =0 (rewritten)
<— Dividing by XY and rearranging terms

10°X 10

Vv A2 v A2 —(k* =)

X oOx Y oy

Equates a function of x alone in its
left-hand side with a function of y

K—o—>

><A

<«—— alone on its right-hand side. This
can happen only when the individual
functions of x and y are constants.

iazX:_AZ _laZ)zf
X ox? Y oy

—a—>

«— AZ?is a constant



2 2
i 0 X — — A4? (rewritten) la_Y — _RB? (rewritten)
X ox’ \ / Y oy’
l Solution l
X =C,cosAx+C,sm Ax « l » Y=C,cosBy+C,smBy

™~

C, and C, are constants /v

C; and C, are constants

v

H,=XY “

Invoking the factor exp j(aoft - £2)
which was otherwise understood

H_=(C,cosAx+C,sin Ax)(C, cos By +C,sm By)exp j(wt—pz)
<+<— Maxwell’s equations

E.E andH ,H,

(transverse components of the electric field and magnetic field components)
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- oH
VXE=—u,— : .
ot > o . Field quantities varyas
_ — —=jw
- ot (et —
Vtzgo—%lf exp jlwt=pz)

(Maxwell's equation)

y— Expanding the curl in rectangular system

OE. OF, ). (GEX OF. ja OE, OF, ).
——2la + ——=d + — =G
oy Oz oz ox )7 \ox Oy

=—jou,(H.a,+H a,+H.a._)

OH_ OH ). (8Hx OH . jq OH, OH_ ).
— a + - a + - a.
oy Oz oz ox )7 \ox Oy

= jows,(E a, + Eyc_iy +E.a,)




OE. OF, ). (GEX OF. ja OE, OF, ).
- a -+ — a + - a.
oy Oz oz ox )7 \ox Oy

=—jou,(H.a,+H a,+H.a._)
r+— E =0
OH. OH, ). (8Hx OH . ja OH, OH_ ). (TE mode)
= a. -+ E a, -+ = a.
oy Oz oz ox ) \ox Oy

= jowg(E.a.+Ea,+E.a.)

(rewritten)

|

oE . oF \_ oE, OF .
——la +| —*la, +| ——-——=a.
Oz oz )7 ox Oy

=—jou,(H.a,+H a,+H.a._)
OH_ OH ). (8Hx OH . jq OH, OH_ ).
= a. -+ K a,+ = a.
oy Oz oz ox )7 \ox Oy

= jows,(E a, + Eyc_iy)
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X component

OFE, OF_ ).
— X a
ox oy )

=—jou,(H a. +Hyay +H.a,)

> (rewritten)
OH, OH, 5 +(8Hx _0H, ja s OH, 0H, 5
oy o6z )" Loz ox ) U ox oy )
y component = JwE (Exax + Eyc_iy)
OE, . )
e I oH, 0 5 Field quantities varyas
> \— — = _] +—
OH, ¢H, _ 0z exp (@t - B2)
oz Ox = Jos )k,
l 1
JPE, =—jouH, — H = _/BEy ()
. OH,k .
—JPH, — ™ = jwe,E, |
l Rearranging terms
2
jﬂEy_aHZ:ja)goEy l > jﬂz_a)zluogoE _aHz:O 12
CC oL, YooOx



Similarly

y component

oH, oH,
oy 0z

|

X component

f

OFE, OF_ ).
ox oy )

- _ja)luO(Hxax + Hyc_iy + Hzc_iz)
OH, OH, 0H, oH,

a,+ a.
Oz ijy[ﬁx Oyj

= jows,(E a, + Eyc_iy)

> (rewritten)

*=—jouH
oz D > o 5 Field quantities varyas
‘ OH. OH, _ e E Oz exp j(wt— B z)
g oy 0Oz :
S ¢
—JPE, =—jouH, H, = pE. (o)
oH . : [
p z +],8Hy = jweE | <
l Rearranging terms
B’E. OH : l 2 2
]ﬂ x4 aZ:]a)gOEx ;]ﬂ a)ﬂogoEx-l-%:O 13
O, Y W, Oy



2 2
J B i E _oH, =( (recalled) J P = o8 +@ =0 (recalled)
Q)N ) Oy
‘ k=a(me)” —
(recalled)
jou, OH . _
OH.) « —p°
E o =
Y ox
oH

We will recall the above relations of proportionality in the electromagnetic
boundary conditions at the walls of the waveguide in the analysis to follow.

Electromagnetic boundary condition at the wavequide wall:

a szzﬁ
l “— E_=0 (TE mode)
E

,=a,x(Ea,+E.a)=0

(Ed,+Ed,+Ed)=0 <« d,x(E—E)=0

(subscript 1 referring to the
conducting waveguide wall region 1
and subscript 2 to the free-space
region 2 inside the waveguide with
unit vector directed from region 1 to 2)

14



a,xE,=a,x(E.a. +Ea,)=0

(electromagnetic boundary condition at the left and right side walls of the rectangular waveguide)

— T

Leftside wall: Right side wall:
r=da x=0
a, =—d, i=a
-a.x(Ea,+Ea,)=0 ax(Ea +Ea,)=0
—E,a =0 Eyc_iz =0
OH.
E,=0 (0<y<b)atx=a <+ £, 8x — E,=0 (0<y<b) atx=0
l (recalled) l

OH

=0 (0<y<bh) atx=a oH,
X

=0 (0<y<hH) atx=0
X

(left side wall) (right side wall) 15



H_=(C,cosAx+C,sm Ax)(C,cos By + C,sm By)exp j(wt— [ z)

(recalled)

|

aéiz =(—C4sm Ax+ C,AcosAx)(C, cosBy+C,sin By)
\

oH, _ (C,cosAx+C,sin Ax)(—=C;Bsin By+C,BcosBy)

.

=0 (0<y<bh) atx=a aZ:O (0<y<bh) atx=0
X

OH

(right side wall)

|

=)(C,A4)(C,cosBy+C,sinBy)=0

(left side wall)

(8H Z
Ox

(forall valuesof y)

This can happen only if

C,=0,4+#0 A=0,C,#0
Situation [ Situation 11

16



_ H
C,=0,4-0 — 9. _, (0<y<b) atx=a (leftside wall
Situation | Ox l

=)(—C,Asin Ax+ C,AcosAx)(C,cosBy+C,sin By)=0

|

—C,Asmm Ax(C, cosBy+C,sm By)=0
(forall valuesof y)

~

C, =0, 4 # 0(Situation I) (left side wall at x = a)
C,=0

H_=(C,cosAx+C,sm Ax)(C,cos By +C,sm By)exp j(wt— [ z)
(Situation 1)

«— (C,=0,C,=0

( OH _
Oox

HZ =(0 —> The finding contradicts with the TE-mode condition (Situation I): [—[Z #0
17



C, =0, 4 # 0 (Situation I) (left side wall at x = a)
C,=0

leads to the contradiction with the TE-mode condition

Therefore, in order to avoid this contradiction in Situation I let us put

A#0,C, #0besides C, =0 (left side wall at x = a)

|

oH, =)(-C,Asin Ax+C,AcosAx)(C,cosBy+C,smBy)=0

Ox

(

(forall valuesof ) (Situationl)  (left side wall at x = a)
i (rewritten)

sinda=0 —> Aa=mrx(m=12,3,...) ﬁ

i (m =0 that makes A = 0 is excluded to
A= ﬂ(m ~1,2,3,...) (SituationT) avoid contradiction with A # 0 taken here)

a
H_=(C,cos Ax)(C;cos By + C,sm By)exp j(wt— fz)

with 4 =""(m =1,2,3,...) (Situation T)
a
18



Similarly we can proceed recalling Situation Il: 4 =0,C, # 0

|

H_=(C,cos Ax+ C,sm Ax)(C,cos By + C,sin By)exp j(wt— P z)
l (recalled)

H_=(C )C,cosBy+C,smBy)exp j(wt—Lfz)
(for all values of y) (Situation II)

l <— Tacitly expressed as

H_=(C, cos Ax)(C,cos By + C,sm By)exp j(wt—pz)

N

interpretng 4 = mr (m=0) (Situation IT)
a

H_ =(C,cos Ax)(C; cos By + C,sin By)exp j(wt— fz)

with 4 =77 (m = 0) (Situation 1) y
a



H_ =(C,cos Ax)(C; cos By + C,sm By)exp j(wt— fz)

with 4 = ﬂ(m =0) (Situation II) (rewritten)
a

’ ™ (for all values of y)

H_ =(C, cos Ax)(C, cos By + C,sin By)exp j(wt— fz)
with 4 =" (m=1,2,3,...) (Situation I) (recalled)
a

Combining

|

H_ =(C,cosAx)(C, cosBy+C,smBy)exp j(wt— [ z)

with 4 = mr (m=0,1,2,3,...) (forall valuesof y)
a

We have so far considered electromagnetic boundary conditions at the left and right
sidewalls of the rectangular waveguide. Let us next turn towards electromagnetic
boundary conditions at the top and bottom walls of the rectangular waveguide.

20



a,xE,=a,x(E.a. +Ea,)=0

(electromagnetic boundary condition at the bottom and top walls of the rectangular waveguide)

/\

Bottom wall:

Top wall:
y=0 y=>b

a,=a, c_in :_gly

a,x(E.a,+Ea,)=0 —a,x(Ea.+Ea,)=0
—£.a.=0 Ea. =0
OH .
E =0 (0<x<a)aty=0 *— Exmg — £ =0 (0<x<aq) aty=b
l (recalled) l

aHZ:O (0<x<a)aty=0 oH,
oy oy

(bottom wall)

=0 (0<x<a)aty=5b

(top wall)

21



aHZ:O (0<x<a)aty=0 oA,
oy Oy

(bottom wall)

=(C, cos Ax + C, sin Ax)(—C,Bsin By + C,B cos By)

=0 (0<x<a)aty=5bh

(top wall)

OH .
Oy

Hence using the same procedure as followed earlier, which starts from the boundary conditions
at the left and right side walls, we can obtain, now starting from the boundary conditions at the
bottom and top walls, the following expression:

l

H_=(C,cosBy)(C,cosAx+C,sm Ax)exp j(wt— [ z)

with B = % (n=0,1,2,3,...) (forall values of x)

22



We have obtained the following:
H_ =(C,cosAx)(C,cosBy+C,smBy)exp j(wt— [ z)

with A = mr (m=0,1,2,3,...) (forall valuesof y)
a

H_=(C,cosBy)(C,cosAx+C,sm Ax)exp j(wt— [ z)

with B = % (n=0,1,2,3,...) (forall values of x)

When combined, these two expressions for H,, while remembering that the former is valid for all
values of y and that the latter for all values of x, prompt us to take the factor cosAx from the
former and the factor cosBy from the latter in the field expression to write it as

l% q4="7 B:% (m,n=0,1,2,3,...)
a

H_ =H_=(C,cosA4x)(C;cosBy)exp j(owt— [ z)
le— Putting H_, = C,C,

H.=H_,cosAxcosByexp j(wt— [ z) with A= m—ﬂ,B = % (m,n=0,,2,3,...)

a 23



H_.=H_,cosAxcosByexp j(wt— [ z)

with 4="" (m :0,1,2,3,...);3:% (n=0,1,2,3,...)
a

l «— A:ﬂ,Bz% (m,n=0,,2,3,...)
a

H_=H_,cos m—ﬂx)cos(%y)expj(a)t—ﬂz) (m,n=0,1,2,3,...) ——
a

l

oOH mir mi

: = g sinPE x)cosCE y)exp j(wt—Bz) (mn=0,1,2,3,..)
ox a a b

\

ik -2 4 cosEsin(E pyew jor—p2)
a

Oy

24



oOH mir mi

= My sin(—x)cos(%y)expj(a)t—ﬁz) (m,n=0,1,2,3,..)
a a

ox
(rewritten)
e o 27 cos(™Z ysin"~ yyep j(wi-Bz)
oy b a b
l (rewritten)
\
= J O GHZ (rewritten) Ex = —J O, aHZ (rewritten)
y k2 _IBZ ax k2 _IBZ ay
jou, mir . mx nrw :
=— H .sm(——x)cos(—y)e ot—LLz) im,n=0,1, 2, 3, ...
VI g (a) (by)xpj( Bz) ( )
= S nﬂHocos(@x)sin(%y)eXp j(@t—pBz) (mn=0,1,2,3,..)
a

x_kz—ﬂzb z

25



A — (k2 — ﬁz) —_R? (introduced earlier while solving the wave equation
by the method of separation of variables)

k*— B> =A%+ B’

l

_ Jjou, mr . mrm nrx , B
y __k2 _IBOZ a HzO Sm(7X)COS(7y)C)§[) ](a)t_IBZ) (m,n _Oa 19 29 39 )

(rewritten)

- jz'a),uoznizHZ
km=p° b

; cos(ﬂx)sin(% Vexp j(wt—fz) (mn=0,1,2,3,.) <—
a

(rewritten)

jou, mr . mrm ni :
E =-— H_ sm(—x)cos(—y)exp j(wt—Lz) (imn=0,1,2,3, ...
VIR B zol(a ) (by) pj(wt—pz) ( )
jou, nrw mi . NT .
= H_ cos(——x)sm(—y)exp j(wt—Lz) (im,n=0,1, 2,3, ...
T g g e (a ) (by) pj(wt—pFz) ( ) e



JOu, mrn

mit ni
E =-— H_,sm(——x)cos(——y)exp j(wt—pz) (m,n=0,1, 2,3, ...
VI g, e (a) (by) pjlwt-pz) ( )
jou, nrw mi . N7 :
= H ,cos(——x)sm(— ypy)exp j(wt—LFz) (m,n=0,1, 2, 3, ...
T g g e a) (by) pj(wt—pz) ( )
A="" B="" (m,n=01,23,.)
a b
@), mi . mrw niw ,
E, =~ Jz Ho . H_,sin(—x)cos(— y)exp j(wt— f z)
mﬂ) (mzj a a b
- + -
( a b
(m,n=0,1,2,3,...)

J oy,

e

Ty cos(— ) xsin( 2 yexp ji(wt - B2)
b a b
(m,n=0,1,2,3,...)

27



E =—— % mﬂHzosin(ﬂx)cos(}%y)em j(@t—Bz) (mn=01,2,3,.)
a

y 2 2
mi niw a
(aj + (bj (rewritten)

Hx——iEy —> H = 2‘]’8 5 mﬂHZO sin(@x)cos(ﬂy)expj(a)t—ﬁz)
Oty (mﬂ) *(MJ a a b
a b
(m,n=0,1,2,3,...)
E=—J%0 "y cos m—ﬂx)sin(%y)expj(a)t—ﬁz) (m,n=0,1,2,3,...)

x 2
mimr nw b a
— | | — (rewritten)
a b

=B 1S cos™ T sinE y)exp j(t - f2)

(m,n=0,1,2,3,...)

28



Field expressions of a rectangular waveguide excited in the TE,,, mode put together

E=—Jt% " g cos@Zx)sinE y)exp j(wt—Bz) (mn=0,123,..)
(mﬂj (nﬂj b a b
- _|_ -
a b
@ mi . M ni ,
E =——2% P p sinmEx)cosC= y)exp j(wi—Bz) (mn=0,1,23,..)
(mﬂj (mrj a a b
- _|_ -
a b
E =0
H = zfﬁ 2 i sin(PE x)cosCn y)exp (ot — Bz) (mn=0,1,2,3,...)
(mirj (mrj a a b
- _|_ -
a b
’ nr mr . N1 .
H, = 215 2T H, cos x)sin(—- y)exp j(wi—Bz) (mn=01,2,3,...)
(mj +(ij b a b
a b

H._ = HZQcos(@x)cos(%y)expj(a)t—,Bz) (m,n=0,1,2,3,...)
a

(m and n are the mode numbers of the rectangular waveguide excited in the TE,,, mode) 29



Characteristic equation or dispersion relation of a rectangular waveguide excited in the TE mode

2 2
2 _IB2 :(m_ﬂj +(%) (m,n=0,1,2,3,...) (recalled)

a

1/2

2 2
<— Putting k= (@j +(%j (mn=0,1,2,3,..)
a

k*—pB* = kc2 «— k=ow(ue,)"” =w/c,free-spacepropagation constant,

c=1/(u,&,)"” being the velocity of light

<— k_,=w,/c, cutoff wave number, @, being the cutoff frequency

\

2
@ 2 2 2 2.2 2 2 2 2.2 2

c

(dispersion relation)

(aw-p relationship with reference to a rectangular waveguide excited in the TE mode)

30



Dispersion relation
Dispersion curve: a hyperbola 1) i
27

y) o — ¢ -’ =0
p=""1

g
2

A

k* —,52 = kcz (recalled)
@ versus [ dispersion characteristics (dispersion curve) of
l the waveguide which meets the c-line at w — «, the latter
shown as a dotted line having positive and negative slopes of
5 5 magnitude equal to the velocity of light ¢ for the positive and
[zﬂ-jz 2 (27[] the negative values of Brespectively. The intercept of the

dispersion curve with the o axis gives the cutoff frequency ..
A A, A,

— ) 5 (characteristic equation of the waveguide)

31



— —¢ (cutoff wave number)

o

= —= (cutoff frequency)
27
€ (cutoff length)
= — (cutoff waveleng
/e
0)2 CO2
2 _ c
—- pc’ 2 =0 > = o2
2 2\1/2
,B:J_r(w ®,")
C

|

In general, there will be two values of g /
for a given value of w —one positive
and the other negative.
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Typical waveguide dimensions
and corresponding cutoff
frequencies (f,) and cutoff
wavelengths (41,) for the TE,,
mode for typical commercial
rectangular waveguide types

Modes in order of increasing
cutoff frequency for typical
commercial rectangular
waveguide types

Waveguide | a (inch) | b (inch) Ag (mm) f(=c/2a) (GHz)
WR-2300 23 11.5 1168.4 0.257
WR-340 3.4 1.7 172.72 1.737
WR-284 2.84 1.34 144 .27 2.08
WR-137 1.372 0.62 69.70 4.30
WR-112 1.122 0.497 57.0 5.26

WR-90 0.9 0.4 45.72 6.56
WR-3 0.034 0.017 1.73 173.7
Waveguide modes in order of increasing cutoff
Waveguide | frequency (f,) shown in parenthesis against the
modes
TE,, (0.257 GHz)
WR-2300 TE,o/ TEy, (0.51 GHz)
TE,, (0.61 GHz)
TE,, (2.08 GHz)
i TE,, (4.16 GHz)
WR-284 TE,, (4.41 GHz)
TE,, (4.87 GHz)
TE,, (6.56 GHz)
WR-90 TE,, (9.88 GHz)

TE,, (13.1 GHz)

TE,, (14.76 GHz)
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2
Characteristic parameters B= (@0 —w, )"

C
Wave phase velocity: —>  V, S 2 ° 212 . 3 cocz 12 lled
IB ( ~w, (@ —w, (recalled)
/ C
Von 0, B 1 B |
c _(a)z_a)cz /2 SN2 HAN\V2 T
-2 (1— f;]
@ A
Voh A, B 1
2 — - - 1/2
Guide wavelength: —> A, = il c 4 1— 1
pr P o f?
k==" . k=—
A > ﬁzﬁ_ Vo _ ¢ 1 | (rewritten)
,B _ 2_7[ 2 ,B c f2 1/2
ﬂg A (1_ cz]
p==
y
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Wave group velocity

We have already defined the phase velocity of a wave v, that involves the phase propagation
constant g, which, in turn, occurs in the representation of a wave associated with a physical
quantity, for instance, the electric field:

E, =field amplitude

E=Eexp jl@i-fz) 3 = phasepropagation constant= /v

v,, = @/ =phase velocity

However, the phase velocity has a meaning only with reference to an infinite monochromatic
wave train.

In order to convey information, we have to resort to a group of wave trains at different
frequencies the form a finite wave train or a wave packet, say, in the form of a modulated wave
such that the modulation envelope contains the information to be conveyed.

The velocity of the wave packet or group of waves is called the group velocity of the wave, which
also represents the velocity with which the energy is transported.

We may then find the group velocity as the velocity of the amplitude of the group of waves in the
wave packet. Through any medium, which, in general, is dispersive, the wave components of the
group travel with different phase velocities.

In what will follow, we are going to show, considering
two components of the wave packet, that the wave Ow
group velocity v, can be found from the relation: y =—

°op 35



Let us consider two components of the wave packet— one at w - Aw and the other at w + Aw,
which are separated in frequency by 2A® with phase propagation constants f-Af and g+ Af
respectively.
Considering the magnitudes of the two
<+— electric field components to be the same for
the sake of simplicity

E=E|e jl(0-Aw)—(f~AB)1+ Efexp jl(@+Aw) —(S+AB)z]

l

E=E exp j(ot—fz)[exp — jl(Aw)t —(Af)z]+exp jl(Aw)t —(Af)z]
«<—— In viewof therelation exp+t j@p =cos@+ jsing

_ The amplitude of the electric field of the combination
E=2E;cos(Awt—Afz)exp j(wt—Lz) — ofthe wave components of the group has the wave-
l like variation with distance and time appearing in the

\ cosine function.

Awt —Apf z = constant
Putting the argument of the cosine function as constant in

14— Differentiating order to find the wave group velocity v,
d dz Aw ow
Aw—Ap -0 — = > Ve, =~
dt dt  Ap For small values of Aw op
in the limit (wave group velocity)
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Group velocity of the wavequide:

The group velocity v, of the waveguide can be found from the relation ®
ow

Ve =
op

The slope of the @£ dispersion curve of the waveguide at
any point represents the group velocity of the waveguide at

the point while the slope of the line joining the point and the A
origin of the curve represents the phase velocity of the i\ i
waveguide.
ow Taking the partial derivative
20— —c*28=0 il o= —w’ =0
a C
o 1/2
C 2
)
\ 4 P
oo ¢ cc ¢ | SN2
g aﬁ W Q Vph > Vpth—C e g _ = = l_fcz
5] C Vo Vph f
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You will surely enjoy an illustrative example in which we will find the length of the
waveguide of cutoff wavelength 69.70 mm that will ensure that a signal at 8.6 GHz

emerging out of the guide is delayed by 1 us with respect to the signal that
propagates outside the waveguide.

_— A, =69.7x107 m (given)
c 3x10°

fo=—= —~=4.3x10"Hz =4.3GHz
A, 69.7x10
l v f2 1/2
& _ c
ch x3x10°

+<— f=86GHz and f =4.3GHz (given); c =3x10° m/s

=(1-0. 25)“2 x3x10° =2.598x10° m/s
=3%x10° m/s
l Tdelay — 1 LS = 10°° g (time delay) (given)

Tietay = l(l—lj =17(0.3849x107° -0.3333x107°*)=7(0.0516)x10° s
(time delay) ¢ l

=19.38x10° m=1.938km

(required waveguide length)

| = waveguide length - 107
(0.0516)x10°*
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Wave impedance:

p
2 2.1/2 H, =~ Ey
Etransverse (Ex +Ey ) C(),UO
Z, = = > RTE > (recalled)
transverse (Hx +Hy ) Hy :LEX
l Wi, )
2 2N\1/2
7 = Etransverse — (Ex +Ey ) — il ZW = dad = WHo :Q( E )1/2
YH B’ 2 2 54 n pn vp ot
transverse [( : 2)(Ey +Ex )]1/2 0 0 ﬂ &
0 €9
- (0
p=—
p V;; . Voh 1
1 c - D) 1/2
= 172 l—fc
(&) \ f2
Z, Vi 1
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Wavequide characteristic parameters put together:

Vo =C )
A,=A
v, =c
Ly =1

v, /e
v, /e
PZARS
Zy [n /
1 s, }
ph = o]
A, =0
(/> ) A
v, =0
Ly =]
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2 2
(0" ~o,”)
C

(recalled)

Evanescent mode ,3 —+

l <—— Taking the upper sign

2.1/2
) 5
IB = > Positive real for @ > @,

C

For frequencies above the cutoff frequency: &>, the phase propagation constant § becomes positive real,
which occurring in the phase factor exp j(af-£z) and, in turn, in the expressions for the RF quantities, refers

to a ‘propagating’ wave through the waveguide along positive z.
Let us now take frequencies less than the cutoff frequency: w<w, and take the phase factor as exp j(«t-yz) :
2\1/2 2 271/2
: N (@ —0) A LED(@,” —o7]
y=Jjf =& ; =*(/) -

o2 21/2 2 2\1/2
j@ - (@' -on? |
=F Positive or negative real for @ < @,

C C

=%(j)

Phase factor occurring in field expressions taking the positive lower sign in . (w 2 _ 0)2)1/2
C

@ -0y T

exp j(wt — fz) = exp(j ot ) exp(—)z) = exp(jwr) exp—( C

=exp jotexp(—az) ——> Non-propagating evanescent mode (@ < @,)
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Phase factor occurring in field expressions

exp j(@t — f2) = exp(jt) exp(—z) = exp(jeoryexp— (L~ @)y

c <— Recalled
= exp jowt exp(—az) (Non-propagating evanescent mode) (@ < @,) N @ ) N
o=—"
: c
E =—JI%0 " ph cos@Ex)sinCE y)exp j(ot—Bz) (mn=01,23,...)
mﬂj (nﬂ] b a b
— | | — (recalled)
a b
(w<w,)
<— Replacing exp j(wt— f z) by exp jort exp(—az)
E. = ]Za),uo 5 nr H_,cos m—ﬂx)sin(ﬂy) exp(—az)exp jor (m,n=0,1,2,3,...)
(Wj . (m) b a b
a b (a) < a)c)

The field amplitude decays exponentially with the axial distance z as exp(- az) for v<w,. o is known as

the attenuation constant in this non-propagating mode called the evanescent mode (corresponding to
non-propagating mode vanishing).

Power consideration in this mode is taken up later.
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E, = ]260,110 2 s H, Cos(m—ﬂX)Sin(ﬂ y)exp(—az)exp(jar ) (rewritten)
GEOE
a b

<—— Taking complex conjugate (w<w,)

E = —J o H_, cos m—ﬂx)sin(% y)exp(—a z) exp(—jwt)
a

o 2 2
i mri ni b
- + -
a b
Following the same procedure we can write

— jou, mi . mrn nr

E, = > > Hzosm—xcosjyexp(—az) exp(jwt)
G RGN
a b (w<w,)
E = J Ot mr H_, sinm—ﬂxcos%yexp(—az) exp(—jwt)

y 2 2
mrit nrw a a
- _|_7
(aj (bj
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v|  Jy=jp=-p

y=Jjp

—>

(@<,

—

( avera ge) z—component

1

= Re(P,

=3 Re(E.H,—E H)

H =- A E,
W, !
H="F
WH,
ornplex)z—component = 5
(w<w,)

(z-component of average Poynting vector)

(recalled)

Re(ExH"),
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—

— LRe(Exil),

omplex)z—component - 7

= Re(P,

( average) z—component

1 * x .
— ERe(ExHy — Eny) (w<w,) (rewritten)

(z-component of average Poynting vector)

l

= 1 * * 7 )
(Paverage)z—component = 5 Re(ExHy B Eny) H;: = l E;
Wi,
L Y Re (EE +EE) |
= —— - RC * *
2ap, TR, H =2Lg
)

(0<a,)



- -2
EE = ?ﬂo . i H’ cos” —— M7 esin? ™% yexp(—2a 2)
mr (mzj b b
- + -
_ . ( —> Real quantities
EE = go,uo - mr H’, sin’ M7 s cost ™ yexp(—2a z)
mrr (mzj a a b
- _|_ -
GEG |
(w<a,) l
Ly

(Paverage)z—component = 5 a)—,uo Re J(ExE: + EyEi ) < ](EXE;: + EJyEJ;k ) 1S purely imaginary

=0 (w<w,)

The average Poynting vector being thus zero, we infer that there would be no power flow in the
waveguide in the evanescent mode below cutoff (w<®,). The waveguide in this mode acts as a
reactive load such that the power oscillates back and forth between the source and the

waveguide.
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Let us take up a simple numerical example to show that a rectangular waveguide of
cross-sectional dimensions 2.5 cm X 1 cm can support typically the propagating mode
TE,, and the evanescent mode TE,, at 10 GHz operating frequency.

3

m=0,n=1 , L2 m=1,n=0
a:2.5><10‘2m> (TE ?oae)fczg{(mj _{Zj} - a:2'5X1O_2m> TE., mode
b=1.0x10"m o1 ¢ b=1.0x10"2m| "
c=3x10°m/s | l c=3x10°m/s |
1/2
f_3><108 m 2+ n ?
¢ 2 2.5%107° 1.0x1072
l (TE,, mode) (TE,, mode) l
8 8
310 — =15x10° Hz =15 GHz L — =6x10° Hz = 6 GHz
2x1.0x10 l 2x2.5x10 l

f<[f. «—— f=10GHz (given) — > f

l

(Evanescent mode) (Propagating mode)

Thus, the waveguide can support non-propagating evanescent mode TE,, and the
propagating mode TE,, 47



What will be the nature of the attenuation constant versus frequency plot of a waveguide
in the evanescent mode?

2 2N\1/2
(@~

(04 (w< a)c) <+<—— Attenuation constant in evanescent mode

C

(recalled)

2 2
2 2 — — X
=X, =
o o , A=Y _2+z_2
o’ (w./c) w.=a,o/c=b a

(equation of an ellipse)

l l l

The plot of a versus w becomes an ellipse. The intercept of the ellipse on the « axis
(ordinate), corresponding to @ = 0, is found to be @,/c. Similarly, the intercept of the ellipse
on o axis (abscissa), corresponding to « = 0, is found to be ..

=1
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The method of analysis of the rectangular waveguide excited in the TM mode (£, #0,H_=0)
closely follows that of the waveguide excited in the TE mode (H_ #0,E. =0) —the

latter already presented. We can then obtain the TM-mode expressions using the

same steps as that followed while obtaining the TE-mode expressions as follows.

TE-mode expressions already Corresponding TM-mode expressions
developed in steps 1  thatfollow
O°H. O°H. 62 O°H. O’E. O°E. OE O’E
o ar e M T ot e M
O°H._ +a2 Sk = FYH. =0 O°E. +az (k= )E. =0
o’ o’ oy
H = (C1 cosAx+ Cz sin Ax) —— E_= (C{COSA'X + C; sin A'x)
(CscosBy+C,sin By)exp j(ot - fz) (C;cosBy+C,sin B'y)exp j(wt — fz)
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TE-mode expressions already
developed

Corresponding TM-mode expressions
that follow

E, =0 (leftsidewall x = a) for all y )
E, =0 (rightsidewall x =0) for all y
E_=0 (bottomwall y =0) for all x
E_ =0 (topwall y =5b) for all x

J

(left sidewall x =a) for all y |
(right sidewall x =0) for all y >
(bottomwall y =0) for all x
(topwall y =b) for all x

SO OO

H_=H_,cosAxcosByexp j(wt— fz)

M7
L mn=0,1,2,3,...)
g%
b |

A,:mﬂ

¢ L mn=0,1,23,...)
P

b

H =H_ cos(gx)cos(%y)
a

exp j(ot— L z)

E =E, cos(’ﬂx)cos(%y)
a

exp j(wt—f2)
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TE-mode expressions already
developed

Corresponding TM-mode expressions
that follow

Az_(kz_ﬁz):_Bz —

AI2 _(k2 _ﬂ2) :_BIZ

cor(] 5] -

k2_'82:k2 ]

P D) 1/2
k = K’””) +(ﬂj } (m,n=01,2,3,...)—
a b

:K’””j +(ﬂj } (m,n=01,2,3,...)
a b
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TE-mode expressions already
developed

—>

Corresponding TM-mode expressions
that follow
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Dominant mode of a rectangular waveguide
* The cutoff frequency of the TE,, mode is the lowest of all other modes.

* If we choose the operating frequency of the waveguide above the cutoff frequency of the
TE,, mode, then the TE,, mode will propagate through the waveguide. Also, any next higher
order mode will co-propagate if its cutoff frequency is lower than the operating frequency.

* For instance, let the operating frequency be 4.5 GHz for waveguide WR-284. This is higher
than the cutoff frequencies of TE,,, TE,, and TE,; modes , which are respectively 2.08 GHz,
4.16 GHz, and 4.41 GHz, but lower than the cutoff frequency 4.87 GHz of TE,,. ( See slide
number 33 for dimensions and cutoff frequencies of waveguide WR-284.)

* Therefore, at the operating frequency of 4.5 GHz, waveguide WR-284 will allow propagation
of TE,,, TE,y, and TE,, but makes mode TE,, evanescent, attenuating it.

* Thus, TE,, mode (which has the lowest cutoff frequency of all the modes) will be excited in a
rectangular waveguide if the operating frequency is higher than its cutoff frequency irrespective
of whether any other modes are exited or not. Hence the TE,;, mode is called the dominant
mode of a rectangular waveguide.

« If the operating frequency is chosen at 3 GHz for waveguide WR-284, which is above the
cutoff frequency 2.08 GHz of the dominant mode TE,, but below the cutoff frequency 4.16 GHz
of TE,, then only the mode TE,,, which is the dominant mode, will be excited in the
rectangular waveguide.

* Moreover, the cutoff frequency of the TE10 mode is the lowest of the cutoff frequencies of all
the TE and TM modes taken together and continues to be called the dominant mode with due
consideration to the excitation of the waveguide in both the TE and TM mode types.
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Starting from the expression for E, and taking help from Maxwell’s equations, we can find the transverse
electric and magnetic field components in the TM mode as we have obtained earlier in the TE mode.
Thus, we obtain the field expressions for the TM,,, mode as follows:

E = —2]ﬂ > mr Ezocosm—ﬂxsinﬂyexpj(a)t—ﬂz) (m,n=0,1,2,3,...)
mizj (mzj a a b
_|_ -
( a b
E, = —Jp m[Ezosin%xcos%yexpj(a)t—ﬂz) (m,n=0,1,2,3,...)

A5

E =F, cos(ﬂx)cos(%y)expj(a)t —-fz) (mn=0,1,2,3,...)
a

J W&, "1 Osin@xcos%yexpj(a)t—ﬂZ) (m,n=0,1,2,3,...)

Hx 2 2 b z
mrmr nrx a
- _|_ -
)
H, =- J @0 mr E, cos%xsin%yexpj(a)t—ﬁz) (m,n=0,1,2,3,...)

GEGE

(TM,-mode field expressions of a rectangular waveguide)

H. =0
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mode numbers of P Mm,w&vb waovc’wia(a

Expressions for non-zero field components of a rectangular waveguide for
typical lower-order modes TE,,, TE,,, TE,, and TM,,:

N\

H =H_ coszxexpj(a)t - z)
a

Ey — _ja)ﬂoa
T

H_, sinzxexpj(a)t - pz); (TE,, mode)
a

H_ = ]ﬁaH 0 SIn— xexp](a)t pz)
T a

H =H, cos%yexpj(a)t - [ 2)

E = JOHD Hzosin%yexpj(a)t—ﬂz) > (TE,, mode)
T
- JPb

. T .
, =——H sm—yexp j(wt-[fz)
T b



2
H =H_ cos—ﬂxexpj(a)t—ﬂz)
a

: 5
E, = _]az),uoa H._, sm—ﬂxexpj(a)t—ﬂz) > (TE,, mode)
T a

H = ﬂ[{zo sinz—ﬂxexpj(a)t—ﬂz)
27 a
E = ;Jﬂ 2zEzocoszxsinzyexpj(a)t—,Bz)
T T a a b
- + -
(a) (bj
- jp T . T T :
—F_, sm—xcos;yexp](a}t—ﬂz)
a

NOLGE

E =F, sinzxsin%yexpj(a)t—ﬂz)
a

H, = szgo 5 ZEZ0 sinzxcoszyexpj(a)t—ﬂz)
T 7\ b a b
- _|_ -
a b

H =-— 1% ZEzocoszxsin%yexpj(a)t—,b’z)

HEEG .

> (TM,, mode)
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Field pattern of typical lower-order
rectangular waveguide modes
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TM,,; mode

The field pattern of the rectangular waveguide has been more elaborately explained in the book.
However, in what follows next, let us discuss the significance of the mode number vis-a-vis the
field pattern.

Y



Significance of the TE,,,-mode or TM,,-mode field patterns of a rectangular waveguide
vis-a-vis the mode numbers m and n

It is easy to infer by examining field patterns that

* mode number m, the first suffix of TE,,, or TM, ., indicates the number of maxima of any
field component, electric or magnetic, along the broad dimension of the waveguide

* mode number n, the second suffix of TE,,, or TM,,, indicates the number of maxima of
any field component, electric or magnetic, along the narrow dimension of the waveguide

Alternatively, m and n can be interpreted as the numbers of half-wave field patterns across the
broad and narrow dimensions of the waveguide respectively.
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Examples:
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For TE,, mode (m = 1, n = 0), the first suffix
being unity (m = 1), there is a single
maximum of the field component along the
waveguide broad dimension. The second
suffix being zero (n = 0), there is no maximum
of the field component along the waveguide
narrow dimension. TE,, mode
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For TE,, mode (m =2, n = 0), the first suffix
being 2 (m = 2), there exist two maxima of the
field component along the waveguide broad
dimension. The second suffix being zero (n =
0) there is no maximum of the field
component along the waveguide narrow
dimension. TE,, mode
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Similar observations can be made by
examining the field pattern of the TM,,, mode,

for instance, the TM,, mode as well.

Later on we are going to make similar

l«———— T ———»>

inferences on the significance of mode numbers
vis-a-vis field pattern with respect to a cylindrical
waveguide.




Cylindrical or circular waveguide can be treated in cylindrical system of coordinates (r,6,z) in

view of the circular symmetry of this type of waveguide.

For a cylindrical waveguide it turns out that the dominant
mode is the TE,; mode characterized by having the lowest
cutoff frequency. Let us emphasize here mainly the TE;; mode
for analysis, although the analytical approach presented here
is rather general and is easily applicable to the analysis of
other higher order TE,,, and TM,,, modes as well.

VzH —ue 0 H 2 <«—— Wave equation for
00 -

ot? the TE mode (H.=0,E.=0)

) Expanding Laplacian in cylindrical
coordinates

10( 6H.\ 1 0°H, 82H O°H,
r +r 692 P — &y ——-=0

)z

<V
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l 0 (,, OH, + 1 GZH 82 & _52HZ =(0 (rewritten)
oo )T e o M
<— Carrying out the differentiation of the first term
O'H, 10H. o°H.  O°H. 10H. _
o ror o2 a2 17 of
«— Inview of the field dependence exp j(wt-£z) which is understood,
enabling us to put 6/0t = jw and 0/0z = - jop
O°H. 106H ) 1 0°H
=+ = E,—PH, +— L=
or: r 0 =) > 00°
<— Rearranging terms
O°H. 106H ) 1 0°H
=+ —— e —P)H, =—— s
or* r or 0 =PI, r* 06
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O°H,
or*

v

O°R

2

O

or

1 0*°H

+ l OH, + (a)zluogo _132)]—[ =—— Z  (wave equation) (rewritten)
r or R : r* 06*
Let us use the method of separation of variables for solving the wave
equation and put
H.=RO
™ Ris a functionof r alone and
l ® is a functionof & alone
OH. _0(RO®) _ OR |
or or or
‘H °R
° ;= ®6 2 (
or or
O’H, 0’0
00’ 00’
1 OR ) ) 1 0°0
+—0O0—+ (0" y,e,— )RO =——R
r or @ty = ) 06’
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0°R 1 __OR 1 00

or> T ;G)E + (wzﬂogo _/Bz)RG) = _r_zRﬁ (rewritten)

O

y— Dividing by RO

12°R 110R 1 0°0 1

+t———+ (e, — ) =———5—
R or* rROr (@ 4o =P r* 060* ®

\4_ 7:(0)2#050_,82)1/2 :(0)2/62—,82)1/2 :(k2_182)1/2

10°R 1 0R , 1 0°O 1
o a2t Y ST oA
R Oor~ Rr or r-o060- 0

\4— Multiplying by »*

r»*R roR 0’0 1
———t—— ==
R or" R or 00° ©




r» R r oR , , 0’0 1

— +y T = — (rewritten)
R or~ R or 00° ®
Equates a function of r alone on its left hand side with a function of 8
alone on its right hand side. This can hold good only when the
individual functions each become equal to a constant.
Putting this constant as
m>
v
»»0°R roR ,, 5
— s t———+yr =m
R or" R or




+——+yr° =m"~ (rewritten)

y— Dividng by r°

10°R 1 8R+72_m_2

——+
R or* Rr or r?

y— Rearranging terms

O°R 10R m’
—+——+( ——)R=0
or- ror r
xX=yr
< X
r=—
In terms of a Y
dimensionless quantity x

O°R 1 OR m*
Pty ——+| ¥ ——|R=0
4 Ox* 4 X Ox 4 P
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We can obtain the expression for the axial component of magnetic field H, from the solution of its

components R and O:

0’0 1 )
—_ 2_:m
00° ®
O’R 1 OR m’
2
4 ox? 4 ox ( 2
(rewritten)
0’0 1 ,
—> —_ —=m
06 ®
2
ZH?+m2®:O

<+— Well known solution

®=Ccosmb+ Dsinm0

C and D are constants

—

\

—

Solve for®
\

H_=RO
Solve for R
Bessel equation
e
2 2
ox ox

<+— Well known solution

R=PJ (x)+0Y (x)

P and Q are constants.

J..(x) is the m" order ordinary Bessel
function of the first kind.

Y..(x) is the m" order Bessel function of
the second kind.
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®=Ccosm@+Dsmmb C=Mcosgy}

l (rewritten) D= Msiny

® =M (cosmBcosy +sinmbsiny) l

|

) 211/2
O =M cos(mb —y) M=(C"+D7)

W= tan” 2
C

The value of ® at angle ¢ would be the
same as that at an angle 6 + 2r (the radial
coordinate r remaining unchanged)

L

cos(mb—y)=cos[m(0+2r)—y]

=cos[mO—y)+ 27w m]

a relation that shall hold good only for integral
values of m, thatis, form=0,1, 2, 3, ....

® =M cos(mb —y) (rewritten)

Choosing ¢ = 0 that amounts to taking the
“— reference of 0 such that it corresponds to the
maximum value ® = Mat =0

v

® =M cosm0O

R=PJ (x)+QY (x) (rewritten)
Y (x) >0 asx—>0

R—>xw asx—0

which in turn would make H_=R® —

which is an impossibility since the field
cannot shoot up to infinity at x (= ) > 0,
that is at r » 0 (axis of the waveguide).

In order to prevent this impossibility we
must put the constant Q = 0 in the
expression for R.

R=PJ (x)+QY, (x) «— O=0

|

R=PJ (x)
14— _x:j/]/'
R=PJ,(y7)
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H.=RO (recalled) <+—

l

H_=PMJ, (yr)cosm6

R=PJ (yr)
®=McosmO

~— PM=H_
H =H_J (yr)cosm0
<— Invoking the understood factor €xp j(@wt— [ z)

H._=H_J (yr)cosmBOexp j(wt—Lfz)

Next we can find the rest of the field expressions with the help of the
above axial component of magnetic field and the two of the following
Maxwell’'s equations:

VxE = — 1, aa—H
ﬁt > (Maxwell’s equations)
fo[ — 50 a_E
ot
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VxE = oH Maxwell's equations  ———— o, 7 _ e °E OF
l ot E. =0 (TE mode) o
(1 OF, _6E6,jq OF, _ 6Ezjq 16H, 0H,). (0H, 6H. ).
a, + ay ——=— a. + -——=la
r 00 oz oz  or ro0 oz ) oz o)’
L1 (8(rE9) _OE, i LL(o(H,) 0oH, ).
r\ or ol r or 00 )~
_ 8H _ 8H9 L j OE, . OE,. OE. ._
= . =&, +—2a,+ .
J ot ot ot ot

10E, OE, l@HZ_GHg:g%

30 & —uo ﬁt rog oz ot
(r-component) (r-component) v
14— E =0 M 18]-[ l 8Hr_8HZ_g%
PE, =—-ou H, OF, _OE, = — L, o, - 00 = Jo&,k, Oz or " ot
oz oOr ot (6-component)
(6-component)
| =0 aHl
== jowe,k,
BE, = au,H, p
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ﬂEﬁ - _a)ﬂOHr

: oH. .
- JPH, - or = jwe,k,

(recalled)

1 oH
——=+ jpH, = jos,E
7'89 .]189 J 0~r

IBEF — a)/uOHH

(recalled)

J;<w>=%Jm<m —

Eliminating H, and £, E, =% OH,
respectively ‘ y.  or >
] — jB oH
V= (a)zluogo _182)1/2 H, = ]2ﬂ :
2 2)1/2 }/ 87' J
= (k> -
Eliminating £, and H, o -~ JBOH. ]
respectively X G 7/2r 00
Er = _]?ILIO 6HZ
yr 00|

H. =H_,J (yr)cosm@ (recalled)

<— Taking partial derivatives

OH
00
OH

=—H_ymJ (yr)sinm@exp j(wt— [ z)
4

=H_,J! (yr)cosmOexp j(wt— [ z)
r
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N\

8611;; =—H_mJ (yr)smmBexp j(wt—LPz)
S
OH , ,
o =H_,J, (yr)ycosmBexp j(wt— P z)
. oH ) (rewritten) — jB 6H
E :]a)luo Hz H — ] z
: 7/2 or (rewritten) ’ ;/27” 00
. S ) ¢ (rewritten)
H :_‘]ﬂ aHZ E :_]a)ﬂo a}Iz
"oyt or " yr 00

l | l \

H,= #HZOme(yr)sinmeexp j(ot-B2)
yr

E,= ]C;)/ﬂo H_J' (yr)ycosmBexp j(wt— fz)

Jou,m : :
o (yr)cosmBexp j(wt— fz) k= 7/2;) H.J,(yr)smméexp j(ot—fz)

J

="y

r z
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Field expressions of a cylindrical waveguide excited in the TE,,,, mode put together
jaou,m : :
E, ===""—H_ . J, (yr)sinmOexp j(wt—z)

Eg — ]a)luo

H_J (yr)cosmBexp j(wt—fz)

E =0

z
r

H = ﬁHzoJ,;(yr)cosmé?exp j(wt—fz)
/4

Hy=2L 1 gni, (y r)sinmOes j(ot-Bz)
7/ r

H.=H_J (yr)cosmBOexp j(wt—Lfz)

(m and n are the mode numbers of the cylindrical waveguide excited in the TE, , mode)
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Electromagnetic boundary conditions at the waveguide wall of
a cylindrical waveguide
Boundary condition at the interface between a conductor and
“—— adielectric/free-space introduced in Chapter 7, here the
r=a interface being the conducting waveguide wall of radius r = a,
the subscript 2 referring to the free-space region inside the
waveguide
a, =—da, «—— Unit vector directed from region 1 (here, conducting
- waveguide wall) to region 2 (here, free-space region
E=Fa +E.a. +FEa inside the waveguide), thus being radially inward at
2 rr %0 z 7%z .
the waveguide wall

a xE,=0

r=a

v

_ ~ ~ axa =0
- N r r

ax(Ea. +E,a,)=0 — ~

l a.xda,=d,

E,d =0

r=a r=a

— E,=0 Eezja)luo H_J, (yr)cosmOexp j(wt—f[z)
/ 4

(electromagnetic boundary l

condition at the conducting J (ya)=0

wall of the waveguide)

has a number of zeros or roots corresponding
to its multiple solutions

|

ya= an (corresponding to the nt" zero or root,
where X, . is called the eigenvalue of
the cylindrical waveguide excited in
the mode TE,,)



ya=X (corresponding to the n' zero or root, where X, is called the
" eigenvalue of the cylindrical waveguide excited in the mode TE,,)

(rewritten)

Xm =3.832, on =7.016, Xos =10.174) (a few lower order eigenvalues of the roots taken

X =184l X. =531 X.=8. from easily available text on Bessel functions, the
1 341, X, =531, 13 =836 eigenvalue X,, = 1.841 corresponding to m =1, n

X, =3.054, X,,=6.706, X,;=9.970 | =1forthe TE;; mode being the lowest of them)

Vo

Dispersion relation and cutoff frequency of a cylindrical waveguide

va :an -— y:(a)ZlLlogo_ﬁZ)l/Z :(a)2/62_182)1/2 :(kz_ﬂz)l/z

()
l o
X <
k=) 2a=X, — K - =2y S K=k =0 ‘
a T c '\k )
K | =7
" oa @ - —w’ =0

c

(dispersion relation)

|

o = X Ko _ De
‘ a a c
(cutoff frequency)
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Dispersion relation of a cylindrical waveguide is

2 .
the same as that of a rectangular waveguide — (02 —,8202 -, = O (rewritten)
with appropriate interpretation of the waveguide be
C
cutoff frequency. W = —mn o

Obviously, the nature of the o-£ dispersion
curve of a a cylindrical waveguide is identical —
with that of a rectangular waveguide.

Dominant mode of a cylindrical waveguide

For a cylindrical waveguide, here considered as excited in the TE mode, we have seen that
the TE,; mode has the lowest eigenvalue X, = 1.841 and correspondingly the lowest cutoff
frequency w, = X,,,,c/a = 1.841c/a.

In fact, the analysis in the TM mode (which, though presented earlier for a rectangular
waveguide, has not been done here for a cylindrical waveguide) would reveal that, of all the
modes of the TE and TM modes of a cylindrical waveguide taken together, the TE,;; mode has
the lowest cutoff frequency.

Therefore,
TE,; mode is the dominant mode in a cylindrical waveguide

TE,, is the dominant mode is in a rectangular waveguide.
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In an illustrative example you will find it of interest to compare the cross-sectional area of a
circular or cylindrical waveguide with that of a rectangular waveguide that has its wider
dimension twice its narrower dimension and that has its cutoff frequency the same as that of
the rectangular waveguide, taking both the waveguides excited in the dominant mode.

Rectangular waveguide Cylindrical waveguide
1/2
cl(m 2 7 2 (a = wider dimension;
fo==ll— 1| +| T b = narrower
c recalled
2|\ a b dimension) ( )
<— Dominant mode: m=1,n =1
<— Dominant mode: m=1,n=0 11C
272'f =— (replacing the symbol a
f c a with & to avoid the
fo=— — ag=—— confusion with the
2a 2fc (X — 1.841) symbol a for the narrow
H dimension of a
l rectangular waveguide)
2 2
a a C
(area) . =axb=ax—=—= 5 f _ X, c :1.8410 ., a,:1.84lc
4
2 2 8f 2rad’ 2ra 2r f,
(cross-sectional area of the given rectangular l
waveguide in terms of the cutoff frequency, Y (1 R4 1)
the latter being the same as that of the given (area) ... =™ 5
circular or cylindrical waveguide in the 47ch
example)
(area), .. (1.841)°c*/(4xf?) 2x(1.841)

- c ) ~2.16
(area),., c?I8f7) 3.143 -6




Field expressions of a cylindrical waveguide for typical lower-order modes TE,,,
TE,, and TE,, (interpreting the TEmn-mode field expressions already deduced):

E =0

g = IO,

E. =0

Hr :£HZO
y

H :HzoJo(

HZOJI(

3.852 rjexpj(a)t —fz)

Jl(ﬁrjexpj(a)t—ﬂz)
a

3.832

—7r
a

jexpj(a)t—ﬂz)

N\

J

Jy(x) = ~J,(x)

(recurrence relation
taking help of)

(TEyy mode)
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E =0

—j@ 7.016 :
E,= J Ot HZQJI( rjexp](a)t—ﬂz)
E. =0 X (TEy, mode)
H, = ﬁHzoJl(mr)expj(a)t—ﬂz)
y a
H. = HZQJO(MrJeij(a)t—,Bz)
a
E =% pH J 1'841rjsi116?expj(a)t—ﬂz)
vr a
@ (1.841 :
JI(1.84lr/a)y= —— E,= ‘]—}/’UOHZQJ1 a rjcos@exp](a)t—ﬂz)
(a/1.841r)J,(1.841r/a) £ -0
~J,(1.841r/a) ) ,
—Jjp (1.841 :
(relation to be made H, = —HzoJl(—” costexp j(wt—fz)
use of) Y a
H,= #Hzojl(@rjsm exp j(wt—fz)
yr a

Hz = HZOJI(

1.841

—7r
a

jcos@expj(a)t - z)

3\

. (TE4; mode)
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Field pattern of typical lower-order
cylindrical waveguide modes

&)

v’

(TEyy mode)

’/T E,,

TE,, TE,, TE,,

vi/all wall wall

Relative electric field
amplitude

Radial

! position
I
I
I

("I'EOn mode; n=1, 2, 3)

Waveguide
centre

(TE4; mode)

The field pattern of the cylindrical waveguide has been more elaborately explained in the book.
However, in what follows next let us discuss the significance of the mode number vis-a-vis the field
pattern of a cylindrical waveguide.
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Significance of mode numbers of a cylindrical waveguide

TE,, mode:

mode number m = 0 = no half-wave field patterns around the half circumference
mode number n =1 = one field maximum across the waveguide radius
approximately mid-way between the axis and the wall of the waveguide

TE,, mode:

mode number m = 0 = no half-wave field patterns around the half circumference
mode number n = 2 = two maxima across the waveguide radius, between the
axis and the wall of the waveguide, such that if one of the maxima is positive the
other is negative.

TE,, mode:

mode number m = 1 = a single half-wave field pattern around the half
circumference (or a single full-wave field pattern around the full circumference) of
the waveguide

mode number n =1 = across the waveguide radius, a single maximum at the axis
of the waveguide

Based on the observation for the TE,; mode, TE,, and the TE,, modes above, the
meaning of the mode numbers of a cylindrical waveguide excited in the TE,,, mode
is
» m (azimuthal mode number) is the number of half-wave field patterns
around the half waveguide circumference;

* n (radial mode number) is the number of maxima, positive and negative
inclusive, across the waveguide radius.

Such interpretation is valid for the TM,,, mode as well.

(TE,; mode)



Inability of a hollow-pipe waveguide to support a TEM mode:

The TEM mode is characterized by transverse electric and magnetic fields and no axial electric
and magnetic field components (E, = H, = 0).

However, for continuous magnetic field lines to exist in a hollow-pipe waveguide, there should
be an axial current present in the waveguide in the form of either conduction or displacement
current in the axial direction.

The absence of a conductor does not allow such conduction current in the axial direction.
Further, for the displacement current in the axial direction to exist in the waveguide, there
should be an axial electric field, the time variation of which being responsible for such current.

However, the TEM mode does not permit the axial electric field. Therefore, a hollow-pipe
waveguide cannot support the TEM mode.

On the other hand, a two-conductor structure comprising a hollow cylindrical waveguide with a
conducting coaxial solid circular rod insert, known as a coaxial waveguide, can support the
TEM mode.
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Power flow and power loss

wm a wawagwia(a

We can find power transmitted in the axial direction z of a rectangular waveguide by
integrating the axial z-component of the average complex Poynting vector (see Chapter 8):

P o=1/2ReExH’

average

over the waveguide cross-sectional area (= axb) transverse to the axis z of the
waveguide as follows:

x:ay=b1 .
P:j IERG(EXH)dedy

x=0 y=0

«— (ExH"),=EH,-EH.

v
x=a y=b 1

P= j j ERe(ExH;—EyH::)dxdy

x=0 y=0
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xayb

P= j j ~Re(E,H, —E,H.)dxdy (recalled)

xOyO

(power transmitted in the axial direction z of a rectangular waveguide)

Restricting the analysis to the dominant mode TE,,

E.=H, =0
E, = S Hzosinzxexpj(a)t—ﬁz)
w/la a
— ; . (TE,, mode)

H. =£Hzosin£xexpj(a)t—ﬂz) N

wla a
H. = —Jb H_, sinzxexp—j(a)t—ﬁz)

wla a )

v

p la)ﬂoaﬁal_]z J' zﬂxde‘dy -— J‘Slnzﬂ'xdxzﬁ. yjbdy:b
2" 4

2 T I a a

l

1 ouya fa 1
P= - —H, by — P=

x=0

bH?, (TE,, mode)

(power transmitted in the axial direction z of a rectangular waveguide) 83



Power handling capability of a waveguide

Let us find an expression for the maximum permissible P, ..imum, that is, the power handlin
capability of the waveguide for a known magnitude of the maximum electric field amplitudeﬁEy‘ .

which the atmosphere of the inside of the waveguide can withstand before it breaks down.

Let us take a rectangular waveguide excited in the dominant TE,, mode.

WLL,a . T :
Ey —_J 7/;0 H_,sm—xexp j(wt— [ z) (dominant-mode TE,, field expressions) (recalled)
E‘Ey .
Hzo = maximun - (gxial magnetic field amplitude in terms of the breakdown electric field)

WL,a

|

1
P= e a)yoﬂa3bH220 (power transmitted in the axial direction z of a rectangular waveguide)
T
) aimam = Lﬁab(‘Ey ' )2 (power hanc.:lling capapility of the rectangular
4(0,110 maxmun - waveguide in the dominant TE;; mode)
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Prnaximum = % ﬁab(‘Ey

0 Iuo maximun

o/ f=v, > 27/ B
v/ e=1/0=f71 )

(rewritten)

(recalled)

p @ LI

maximum y .
4IUOC maximun

In an illustrative example let us calculate the maximum power handling capability of WR-
340 rectangular waveguide, excited in the dominant mode, operating at 3 GHz frequency,
taking the breakdown limit of air as 29 kV/cm and taking the waveguide dimensions as:

a=34"=34%x254%x10"m and b=1.7"=1.7x2.54 %10 m.

Recalling the expression for the cutoff frequency of a rectangular waveguide in the
dominant mode, we can calculate:

f. =2i «— 0=34"=3.4x2.54%x10"7 m (dominant mode: m =1, n = 0)
a

l

f.=1.737x10"Hz =1.737 GHz
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[ a=34"=34%x2.54x10"m
b=17"=1.7x2.54x10"m

ab=34%x2.54x1.7x2.54x107*
=37.29%x10*m?

Y «— £ =1.737x10° Hz =1.737 GH ("ewnitten)

( j —0.335

f=3GHz =3x10°Hz (given)

(given)

Vv

(E,|  )=(29x10°) (V/m)’ E|  =29kV/em=29x10° V/m (given)
— —7
, ab(l_ﬁz/fz)l/z P | )2 - /,[0 —47[210 H/m
4p,c Y Imaximun c¢=3x10"m/s
L _3729x08155x29x29 .,

maximum 4 4% 3.143% %3
=16.952x10° W =16.952 MW
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Power loss per unit area and power loss per unit length of a rectangular waveguide

Power loss per unit area at a conducting surface here the interface between the
conducting wall and the inside of the rectangular waveguide is given by (see Chapter 8)

F . =powerloss per unit area

—

-7 *
RgJ -J; «<— R =surfaceresistance

N

1
})LAZE "

J, =surfacecurrentdensity

Surface current density at any of the four waveguide walls can be found from the following
electromagnetic boundary condition at the concerned waveguide wall:

R . Recalling (from Chapter 7) the electromagnetic boundary condition at
a, ><I—I2 = JS ' the interface between region 2, here the free-space region inside the
l waveguide wall, and region 1, here the conducting wall region

Let us next find the surface current densities developed at the right side wall (x = 0),
left side wall (x = a), bottom wall (y = 0) and top wall (y = b) respectively.

A

Y a, is theunit vectar
directed from the waveguideregion 1

(conductirg wall) toregion 2 (free-spaceinside)

—o—
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H_ = ﬂHzo sinzxexpj(a)t—ﬂz)
a

7o ~ P ~ «— H = O
H,=Ha,+Ha,+H.a, y L (TE,, mode)

T .
l H, :Hzocos;xexp](a)t—ﬂz) (recalled)

ﬁ :‘]ﬂaH o SIn— xexp](a)t pz)a +H. coszxexp](a)t pz)a.
a

—>

(boundary condition) (recalled) <+— a, = a_ (right side wall)

S

l_.
L

s rightsidewall — [Cl ]X|:]Ij z0 Sm a xeXp](a)l‘ IBZ)a +H COSZXCXp](a)t IBZ)CI :|
a xa =0
G, xd,=—d,

x =0 (rightside wall)

cosO=1

QY

v

Js right sidewall —

—H_,exp j(wt—fBz)a,
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Similarly, we can derive next an expression for the surface current density developed at the
left side wall.

H, = ﬂHZO sinzxexpj(a)t—ﬁz)&x +H_, coszxexpj(a)t—ﬂz)&z
T a a

—

a ><]—[2 = js (boundary condition) (recalled) <+— C_in = —6_le (1€ﬁ side Wall)

. a T
s leftsidewall — [ Cl ]Xl:]lj OSln a xeXp](a)t ,BZ)CI +H COSerXp](a)t ﬂZ)Cl :|
a xa. =0 )
ax X ;= —Cly

x =a (leftside wall)

cosw =—1

v

—H_,exp j(wt—fz)a,

Js left s1dewa11
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Next, let us derive next an expression for the surface current density developed at the
bottom wall.

H,= ﬂHZO sinzxexpj(a)t —pz)a, +H coszxexpj(a)t —pz)a, (TE,, mode)
a a

—

— —

a xH,=J_  (boundary condition) (recalled) <+— a, = C_iy (bottom wall)

Js bottom wall —

T
[a]x{]ﬂa _oSIn— xexp](a)t Bz)a, +H. cos—xexp](a)t ,Bz)a}
a

|
|
|

Ql
Ql
Q

y=0 (bottomwall)

s bottom wall —

J = —@HZO sinzxexpj(a)t —pz)a. +H,_ coszxexpj(a)t —pz)a,
a a
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Next, let us derive next an expression for the surface current density developed at the top
wall.

H, = ﬂHZO sinzxexpj(a)t—ﬁz)&x +H_, coszxexpj(a)t—ﬂz)&z
T a a

—

a ><Ijl2 = js (boundary condition) (recalled) <+«— 4, =—a,, (top wall)

s top wall

T
=[—a ]x{]ﬂa _oSIn— xexp](a)t pz)a. +H. cos—xexp](a)t ,Bz)a}
T a

|
|
|

QU
X

a
y=>b (topwall) |

<

s top wall —

1pa —“—H_, smﬂxexpj(a)t Pz)a. —Hzocoszxexp](a)t Pz)a,
a

91



Expressions for surface current densities at the waveguide walls are required to find power loss per unit
area P, in terms of their surface resistance Rg for each of these walls with the help of the expression:

P,= %RS.}S -J . (deduced in Chapter 8)

ik

|
v

¢ rightsidewat = —41 2o €XP J(ot—p Z)C_iy

|

s tefisidewal = —H o €Xp j(@t = f z)a, (TE,, mode)

Jjpa

7 . T , . T . B _
Js bottom wall — HzO Sm—xeXp](a)l‘ _,BZ)CZZ +HZO COS—XeXp](C()t —,Bz)ax [ (rewritten)
7 Jjpa T . - T _ .
Sy wopwan="—H_osm—xexp j(wt—fz)a.—H_jcos—xexp j(wt—fz) a,

T a a )

<—— Taking complex conjugate

Tk . - 3
J; right sidewall —H , exp— j(wt - ,Bz)ay

Tk

Js leftsidewall _Hzo CXp— J(wt - IBZ)Eiy

J: ~ 2By sinZ xexp- j(ot - ) + Hycos™ xexp— j(wt - B2)a, |
T a d

s bottom wall
ok ],Ba . T . — T . —
s top wall = P HZOsm;xeXp_.](a)t_IBZ) aZ_HZ()COS;xeXp—](COl‘—,BZ) ax 92
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Using the expressions for the surface current densities and those of their complex conjugates already
presented, which are involved in the expression for power loss per unit area P, ,, we can write the
following expressions with respect to all the four sides of the waveguide wall:

js j: =[-H_ ,exp j(wt—pz)a,]-[-H. ,exp— j(wt— [z)a,] (rightside wall)

T
-

=[-H,,exp j(wt—fz)a,]-[-H,  exp— j(wt—fz)a,] (leftside wall

= = jpPa T

J J, =[-——H_,sm— xexp](a)t pz)a.+H_ ,cos—xexpj(wt—LFz)a]
T a a

],Ba T

[=—H_,sin— xexp jlot—pPz)a. +H_,cos—xexp— j(wt— [ z)a,] (bottom wall)
a a

J - J = ‘]'BaHzosmﬂxexp](a)t Pz)a. —Hzocoszxexp](a)t pz)a.expj(ot—LFz)a]
T a

J’BaH ,Sin— xexp Jjwt—pFz)a, —H, coszxexp J(ot—fz)a,.] (topwall
Vs a a

l

We can next simplify the above expressions before they can be used in the expression for P 4.
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1 - et 1 . — . —
Ba =§RSJS Jy =§[—Hzo exp j(wt=pfz)a,]-[-H. exp— j(wt—fz)a,]
:% R,H.,> (right side wall
1 - et 1 . — . —
Ba =§RSJS Jy =§[—Hzo exp j(wt=pfz)a,]-[-H. exp— j(wt—fz)a,]
:% RH.,> (eftside wall
1 - - 1 jpa . T , . T . .
B, = ERSJS J= ERS[_—HZO sin—xexp j(wt—fz)a +H_jcos—xexpj(ot—Lfz)a,]
T a a

TP 1 sin ™ xexp- j(@t - B2)a, + H ycos” xexp- j(@i—B2)a,]
Vs a a

1 a’ T T
=— stoz > sin® = x+cos” —x (bottom wall)
2 T a a

1 -
B.=—R,J,- J —R [—ﬂ o SIN— xexp](a)t pz)a. +Hzocos£xexp](a)t pz)a ]
T a a

LA 5 2
J'BaHzosmﬂxexp j(ot—pz)a, +Hzocos£xexp J(wt—pz)a.]
7T a

1 2q* T T
:—RSHZo2 sin? = x+cos’ = x | (topwall)
2 ’ 94
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We can then put together the expressions for power loss per unit area on all the four walls of the waveguide:

1 2
= ERSHZO

- PLA,leftsidewall -

RH[
2 7’

PLA,right sidewall

})LA,bottom wall — })LA ,Ltop wall —

N\

)

) T
Sll’l —X-I—COS —X
a a

From the expression for power loss per unit area, we can also find power loss per unit length of the

waveguide as follows.

1

dP, =—R,H_, dydz (right sidewall) «——
l 1 2y=b z=]
PLL,right sidewall — IdI)LL = ERSH 20 J:Ody Zj dz
_ %RSHZOZb (right sidewall)

— %RSHzozdde (left sidewall) <

|

PLL,lcﬁ sidewall

dn,

Zyzb z=l
Jdy [dz

y=0 z=0

:J.dPLL ==

| 2
— 5RSHZO b (left sidewall)

Element of power loss dP, over an element of strip of
elemental thickness dz and elemental area dydz
across the narrow dimension of the waveguide on its

right sidewall (x = 0)

Power loss per unit length P, across the narrow

‘ dimension of the waveguide on its right sidewall

Element of power loss dP, over an element of strip of
elemental thickness dz and elemental area dydz
across the narrow dimension of the waveguide on its

left sidewall (x = a)

Power loss per unit length P, across the narrow
dimension of the waveguide on its left sidewall



LT T
—R.H. L . smz—x+cos2—x)

PLA ,bottom wall
2 T a a

dxdz «— elemental thickness dz and elemental area dxdz
across the broad dimension of the waveguide on its

bottom wall (y = 0)

] Element of power loss dP, over an element of strip of

dPF | —RH ('Bz sin’ —x+c0s Zx
2 T a a

(bottom wall)

1 T N V1
BLL bottom wail = _[dPLL =~ RH.’ J ( +sin® Zx+cos’ —x)dx IdZ (bottom wall)
2 7’ a a 2o
<+— (using the relation o7 ) I
T l-cos—x
sin® —x = G
a 2 S Power loss per unit length P, across the broad
14 COS27Z' X dimension of the waveguide on its bottom wall
cos’ —x = a
a 2 )
and evaluating the integral)

v 1 . a ﬁZaZ )
PLL,bottom wall — ERSHZO 5( 72_2 +1] <
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B

1 2a* ) T T
Asopwall = = RsH L’B -—sin > 2 x+cos” —x
2 T a a
l Element of power loss dP, over an element of strip of
,B elemental thickness dz and elemental area dxdz
dR, _R H > sin’ —x +cos’ —x dxdz “ across the broad dimension of the waveguide on its
T a a top wall (y = b)
(top wall)
1 y=a 2 2 ) TT ) TT z=1
BLiopwan = AR = f ( sin” = x+cos” = x)dx [dz  (top wall)
’ 2 a a 2=0
<+— (using the relation 27 )
T l-cos—x
sin® = x = a
a 2 S Power loss per unit length P, across the broad
27 dimension of the waveguide on its top wall
l+cos—x
cos’ —x = a
a 2 )
and evaluating the integral)
y
1 2 Cl ,B <
P —RH +1 )
n=
LL.top wa 2 2 72'2
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Power loss per unit length of the rectangular waveguide adding contributions of all the four walls

1 1 1 a( Ba’ 1 a( Ba’
pLL:ERSH202b+§RSH202b+5RSH2025(—+IJ+ERSH2025( —+1

2
T T

2 2
= RSHZ()2 b+ %[1 + ,6’7[621 ] (TE4, mode)

The above expression is useful in finding the expression for the attenuation constant of the waveguide.

Power loss caused by the finite resistivity of the waveguide wall may be accounted for by generalizing
the dependence of field components as

exp(jot—yz)=exp jotexp(—az)exp(—jfz) =exp(—az)exp j(wt— [ z)
l A
The amplitude of the field

component decreases h i
exponentially with z, with the S = phase propagation
constant

factor exp (-az) |« = attenuation constant

!

Power P (z) transmitted through
the waveguide decreases
exponentially with z, with the —»
factor exp (-20.z)

y=a+ J:B = propagation constant

See for instance average complex - L
Poynting or power density vector —— P =1/2Re ExH
involving the electric and magnetic field average
components each decreasing with the

l factor exp (-a.z) making their product
P(z)=P0)exp(2az) depending on the factor exp (-20.z)

*

(power transmitted 98
through the waveguide)



P(z) =P(0)exp(—2axz) (rewritten)

l <— Differentiating

dP(z) =2aP(0)exp(—2a z) =-2aP(z)
B dP(z)
__ dz - _ @ =
2P(2) dz i
_ I
B 2P(2)

14— dropping the parenthesis from P(z)
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IBZ 2
a
7 H (recalled) (TE,; mode)

P, = RSHzoz{b + %(1 +

/ T
v B
= (rewritten)
\ 1 3 2
P= o bH, (recalled) (TE,, mode)
1 . . .
— _— (in terms of the conductivity o and skin depth
27°R {b + (1 + ﬁ H r R, oo o of the material of the waveguide wall; see
o= 2 i Chapter 6)
o, a’b
)
l < ﬁ -
Von
27’ b+(l—|— pa Yoh _ I — (recalled)
o 2 7[ C 602
cSwu, Ba’b 1—(02
l 2b @’
e a o T e o
agonb o ( 2 12 ‘' a (TE10 mode)
o

(attenuation constant of the rectangular
waveguide in the dominant TE,, mode) 100



In a numerical example, let us calculate the attenuation constant of a rectangular
waveguide (a = 0.9/ and b = 0.4"; cutoff frequency = 6.56 GHz) made of aluminum (c =
35.4x10¢ mho/m) at the operating frequency 9 GHz in the dominant mode.

2b o
1 o a o CTT _
= — (w.=—) (TE,, dominant mode)
con,b w [ > j a (recalled)
= -1
a)c

<+— After a simple algebra and recalling § — # (skin depth)
\ 77 f1o0

2b a=0.9"=0.9%x2.54x102m]
a

1 |7 fu, I f 1, =377 ohm hb=04"=0.4x2.54x10"m
o = <
mot e [ f2 =47x107 H/m [ =9x10"Hz ¢ (given)
1 c

2 f.=6.56x10"Hz
o =35.4%x10° mho/m

a=0.0177Np/m =0.0177=8.68x0.0177=0.154 dB/m
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In another interesting problem, let us find the value of the wave frequency relative to

the cutoff frequency of a rectangular waveguide excited in the dominant mode that

results in the minimum attenuation due to the finite conductivity of the material of the

waveguide, in terms of the waveguide dimensions. Numerically appreciate the
problem taking a = 1.8b and f.= 6.56 GHz.

2

2, 1

- recalled n crpreting . / w =
S g f 2 1/2 C c

f;2

1 7 fHy

oo o

9

f

- G= 1 /”ﬂofc
n,b o

5—1/4 +2b§3/4

a
(1 _ é;)l/2

A

— <

v
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G§_1/4+2“b§3/4 (rewritten) g _(fc
o= (1_§)1/2 - f
| l |
da dadé 0
df  dé df

l

da -2G 2

_1_§§1/4+3f(1_§)955/4+ 5/4

2
j (rewritten)

At the frequency where the minimum
attenuation of the waveguide takes
place

_|_2b§9/4
a

df  f(-&)" 2(1-¢)

values of
= o)

v

2b
+7

_1_551/4_'_3;7(1_65)55/4_'_ 5/4 ; ‘59/4

2
2(1-2)

=0

<— Quantity outside the parenthesis being non-zero for practical

=0
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1- 3b 2b
_2551/4 +7(1_‘§)§5/4 + 5/4 +7‘§9/4
a d —(0 (rewritten)
2(1-¢)
3b 2b 1-
_(1_§)§5/4 +§5/4 +_§9/4 :—551/4
a a 2

l +— Dividing by 51/4

1—-¢ Can be rearranged as

ﬁ(l_§)§+§+2_b§2: » 2bE* —(Ba+6b)E+a=0
a a

2
l Can be solved as
? 2
AN (3a+6b)++/(3a +6b)> —8ab
— f 4b

f _ 4b
fo \(3a+6b)++/(3a+6b)* —8ab
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f 4b
= (rewritten)
fo \(3a+6b)++/(3a+6b)* —8ab

c

a=1.8b (given)
3a+6b=3x1.8b+6b=11.4b
8ab =8x1.8bxb =14.4b

A

S 4 =2.46
[ \11.4b+/(11.4)°b* —14.4b°

l<—fc = 6.56 GHz

f=6.56x2.46=16.13 GHz
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mewwmw?" PlAes

v Waveguide—a hollow pipe made of a conducting material—is extensively
used for the transmission of power in the microwave frequency range.

v Waveguide can support transverse electric (TE) mode, which is
characterized by non-zero axial magnetic field and zero axial electric field

v Waveguide can also support transverse magnetic TM mode, which is
characterized by non-zero axial electric field and zero axial magnetic field.

v Waveguide behaves as a high-pass filter supporting propagating waves
above a cutoff frequency that is related to waveguide dimensions.

v  TE-mode and TM-mode field solutions for both the rectangular and
cylindrical waveguides have been obtained.

v Characteristic equation or dispersion relation of a waveguide can be found
with the help of the field solutions and electromagnetic boundary condition that
the tangential component of the electric field is nil at the conducting surface of
the waveguide wall.

v One and the same dispersion relation is obtained between the wave
angular frequency o and phase propagation constant $ of a waveguide for the
TE and the TM modes involving their respective cutoff frequencies ..

v -3 dispersion plots of Identical nature are generated for rectangular and
cylindrical waveguides excited in TE or TM mode.
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v' Cutoff frequency of the waveguide is the frequency o corresponding
to zero value of phase propagation constant # (which can be identified
as the point of intersection between the «-f dispersion plot and the
abscissa, that is, w-axis of the plot).

v Cutoff frequency of the waveguide depends on the waveguide
dimensions and waveguide mode chosen.

v’ Characteristic parameters of a waveguide are guide wavelength,
phase propagation constant, phase velocity, group velocity and wave
impedance, each of them depending on the operating frequency
relative to the cutoff frequency of the waveguide.

v' Evanescent mode is supported by a waveguide below its cutoff
frequency associated with no component of the average Poynting
vector in the direction of wave propagation, corresponding to no power
flow in the waveguide.

v' Mode numbers m and n are subscripted in the nomenclatures TE,,
and the TM, , representing respectively the transverse electric and
transverse magnetic modes of the waveguide.

v Dominant mode of a waveguide is characterized by the lowest value
of the cutoff frequencies of all the TE,, and the TM_, modes of the
waveguide.

vYDominant mode of a rectangular waveguide is the mode TE .

\ Dominant mode of a cylindrical waveguide is the mode TE,;.
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v Mode numbers m and n of the TE,, and TM,, modes of a rectangular or
cylindrical waveguide can be correlated with their respective field patterns across
the waveguide cross section.

v' For a rectangular waveguide, the mode number m indicates the number of
maxima (of any field component) along the broad dimension of the waveguide,
while the mode number n indicates the number of maxima (of any field
component) along the narrow dimension of the waveguide. Alternatively, you may
interpret m and n as the numbers of half-wave field patterns across the broad and
the narrow dimensions of the waveguide respectively.

v For a cylindrical waveguide, the mode number m indicates the number of half-
wave field pattern around the half circumference and n indicates the number of
positive or negative maxima across the waveguide radius

v Why a hollow-pipe waveguide cannot support transverse electromagnetic (TEM)
mode, for which the axial electric field and the axial magnetic field are each nil,
has been explained.

v Expression for the power propagating through a rectangular waveguide above
its cutoff frequency has been developed and hence the power handling capability
of the waveguide has been found in terms of the breakdown voltage of the
medium filling the hollow region of the waveguide for dominant-mode excitation of
the waveguide.
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v Expression for the power loss per unit length of the walls of a rectangular
waveguide due to the finite resistivity of the material making the walls has been
developed for dominant-mode excitation of the waveguide.

v’ Expression for the attenuation constant of a dominant-mode-excited
rectangular waveguide has been developed using the expressions for
propagating power and power loss per unit length of the waveguide.

v’ Attenuation constant of a waveguide depends on the operating frequency
and the waveguide dimensions which should be taken into consideration while
choosing the waveguide mode and frequency for lower waveguide attenuation.

Leaders are moowm?ul% go ﬂ/w«?/v Ww 9
of% boot /o@ MW%M and more worked-ovd

W and veview MioM.
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