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Engineering Electromagnetics Essentials

Chapter 8

Electromagnetic Power Flow

1



2

Objective

Topics dealt with

Development of basic concepts of electromagnetic power flow that can be 

subsequently used to study power flow through unbounded or bounded medium  

Energy and energy density stored in electrostatic and magnetostatic fields

Poynting vector (power density vector) 

Poynting theorem (energy balance theorem)

Appreciation of energy density stored in electric field, energy density stored in 

magnetic field and power loss in a conductor (Joule’s law) from the applications of 

Poynting theorem to the problems of a parallel-plate capacitor of circular cross 

section, an inductor in the form of a solenoid of circular cross section, a resistive 

wire of circular cross section carrying a direct current, respectively.

Power loss per unit area in a conductor in terms of the surface resistance and 

surface current density of the conductor

Complex Poynting vector theorem giving the concept of time-averaged 

electromagnetic power flow and the associated power loss due to the presence of a 

lossy conducting medium
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Average power going out of a volume enclosure as the outward flux of time averaged 

complex Poynting vector through the enclosure

Reactive power flowing into a volume enclosure and its relevance to average energies 

stored in electric and magnetic fields in the volume

Exemplification of the concepts of power flow in conduction current antennas 

Hertzian infinitesimal dipole antenna

Antenna directive gain, power gain, radiation resistance, effective length, effective aperture 

area and Friis transmission equation

Finite-length dipole 

Antenna array

Background

Basic concepts of static electric field, static magnetic field and those of 

time-varying fields developed in Chapters 3, 4 and 5 respectively as well 

as basic cocepts of circuit theory 
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Let us find the work done in distributing n number of point charges Q1, Q2, Q3, …..Qn in fee-space one 

by one in order by finding the work done in placing each of these point charges at their respective 

positions. 

Work done in placing the first point charge Q1 at its position = 0 (since there is no electrostatic field in 

the region against which the charge has to be moved for placing it at its position)  

Work done in placing the second point charge Q2 at its position = Q2V21

Work done in placing the charge Q3 at its position = Q3V31 + Q3V32

Work done in placing the third point charge Q4 at its position = Q4V41 + Q4V42 + Q4V43, and so on

V21 is the potential at the location of Q2 due to the point charge Q1, and so on

on so and
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r21 = distance of the location of Q2 from the location of Q1

r43 = distance of the location of Q4 from the location of Q3,,

and so no

Energy and energy density stored in

electrostatic and magnetostatic fields
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r21 = distance of the location of Q2

from the location of Q1

r12 = distance of the location of Q1

from the location of Q2V21 is the potential at the 

location of Q2 due to the  

point charge Q1

 
4

Similarly,
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V12 is the potential at the 

location of Q1 due to the  

point charge Q2

Right hand sides of the above two 

expressions  are equal since r21 = r12

121212 VQVQ =

on so and

 

Similarly,

131313 VQVQ =

We are going to use these identity 

expressions in the analysis to follow 
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We consider a large volume enclosure at a large distance r from 

the charges. 

V  1/ r, D  1/ r2, and dS  r2 so that the integrand of the first 

term becomes  1/ r

The integrand of the first term may be ignored
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(electrostatic energy stored from the work done)

(magnetostatic energy stored from the work done)

Analogously,

Electrostatic energy density

Magnetostatic energy density 8
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With particular reference to a simple example of a parallel-plate capacitor, appreciate the 

expression for electrostatic energy already derived as 

DEUE


.

2

1
 =

Let us find from first principles the work done in charging a parallel-plate capacitor by a source of 

potential. We consider the plate dimensions to be large compared to the distance between the plates 

of the capacitor.

00 CVQ =

CVQ =

00 VV 00 QQ 

VdQdW =Capacitor

dQ
C

Q
dW =Capacitor

Charge Q0 of the fully charged parallel-plate capacitor of capacitance 

C  with a potential difference V0 between its plates  

Charge Q of a capacitor of capacitance C  charged to a potential 

difference V between the plates of the capacitor  

Element of work dWCapacitor done in adding an extra element 

of charge dQ to the capacitor when it is already raised to 

potential V and has a charge Q

Integrating dWCapacitor , we can find the work done in charging the 

capacitor  to a given amount 



10

 
=

=

=

=

=







===

OQQ

OQ

QQ

Q
C

QQ

C
dQ

C

Q
dWW

2

0

0

2

CapacitorCapacitor
2

1

2

1
0

2

0

2

0

22

0
Capacitor

2

1

2

1

2

1
CV

C

VC

C

Q
W ===

dQ
C

Q
dW =Capacitor (recalled)

(work done to charge the capacitor 

to its full amount Q0)

Integrating

00 CVQ =

(work done to charge the capacitor 

to its full amount V0)

(electric field magnitude E, supposedly uniform in a direction 

perpendicular to plates of the capacitor, with dimensions large 

compared to the distance d between the plates)2

Capacitor )(
2

1
EdCW =

EdV =0 dVE /0=
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2

Capacitor )(
2

1
EdCW = (work done in charging the capacitor stored in the form of 

electrostatic energy of the capacitor)

Dividing by the volume Ad of the capacitor

DEEU


.
2

1

2

1 2

Capacitor == 

Ad

EdC
U

2

)( 2

Capacitor = (electrostatic energy density stored in the electrostatic field of the capacitor)

d

A
C


= (capacitance of a parallel-plate capacitor) 

Interestingly, the above expression with reference to a capacitor agrees with the 

expression for electrostatic energy density deduced earlier from first principles.  

(electrostatic energy density stored in the electrostatic field of the capacitor)

Let us next experience a similar example of agreement with reference to an inductor with 

respect to magnetostatic energy density. For this purpose we can take the particular problem 

of finding the energy density stored in the magnetic field of a solenoid. 

ED


=
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For this purpose, let us find the work done in establishing a current i in a long solenoid of 

inductance L by an induced electromotive force. 

dt

d

dt

d BB 
==inducedE (magnitude of emf induced in the solenoid 

interpreted as positive for a charge building 

up with time )

idtdq =

dqdW inducedSolenoid E=

Lidiidt
dt

di
LdW ==Solenoid

Element of work done dWSolenoid by the induced electromotive force 

in bringing about an increment of current di in the solenoid in an 

infinitesimal time dt thereby adding an element of charge dq is

idt
dt

d
dqdW B== inducedSolenoid E LiB = (magnetic flux linked with the solenoid)

Let us then take the particular problem of finding the energy density stored in the 

magnetic field of a solenoid. 
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Lidiidt
dt

di
LdW ==Solenoid

Integrating from the limit i = 0 to i = I0

(work done in building up current in the 

solenoid from i = 0 to i = I0)
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(energy stored from the work done in the solenoid when the current is i = I0 in the solenoid) 

2

0Solenoid
2

1
LIW =

lnL  2
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)()(
2
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1 2

00

2

0

2

0Solenoid lnIIlnW  ==

2

00Solenoid )(
2

1
nIU =

(inductance of the solenoid of length l and cross-sectional area , n being the 

number of turns per unit length )

(energy stored in the solenoid when the value of the current is i = I0 in the solenoid) 

(recalled from Chapter 4)

Dividing by the volume l of the solenoid of length l and cross-sectional area 

(energy density stored in the solenoid)  
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2

0Solenoid
2

1
HU =

0nIH =

(energy density stored in the solenoid)  

2

00Solenoid )(
2

1
nIU =

(recalled from Chapter 4)

Interestingly, the above expression with reference to an inductor agrees with the 

expression for magnetostatic energy density deduced earlier analogously from the 

expression for electrostatic energy density deduced earlier from first principles .  

(magnetostatic energy density stored in the magnetostatic field of the inductor)

Obtain the following expression for the inductance per unit length of a coaxial cable 

starting from the expression for energy density stored in a magnetic field, where a is the 

radius  of the inner conductor b is the inner radius of the outer conductor of the cable: 

.length)unit (per   ln
2

0

a

b
L




=

BHU B


.

2

1
= (magnetostatic energy density)  (recalled)

In order to find the required expression let us start with
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BHU B
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1
= (magnetostatic energy density)  (recalled)
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(
2

1 2

0 dldrr
r

I
WB 


=

Multiply by the element of volume 2rdrl of the cylindrical shell 

of length l and infinitesimal thickness dr of radius r lying 

between the radius a of the inner conductor and the inner 

radius b of the outer conductor of the coaxial cable 

(magnetostatic energy density)  

(element of magnetic energy stored in the volume element) 

(recalled from Chapter 4)
r

I
H

2
=

(element of magnetic energy stored in the volume element) 
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ILWB
= (alternative expression for the energy stored over the length 

l of the coaxial cable from the work done in building the 

current I in the cable of inductance L/) (derived earlier)Comparing 

the right 

hand sides
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
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Dividing by l

(inductance per unit length 

of the cable)
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Poynting vector and  

Poynting theorem

HE


=P [having unit of (V/m)(A/m) = W/m2]

The phenomenon of the storage, loss and flow of electromagnetic energy follows the basic energy 

balance principle well stated by the Poynting theorem. We can formulate the theorem in terms of a 

vector quantity called Poynting vector defined as:
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2

1









  .
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 ticMagnetosta

  .
2

1
  

densityenergy 

 ticElectrosta

BHU

DEU

B

E





=

=

Poynting vector

(recalled)

(recalled)

(recalled)

(recalled)

named after the British physicist 

John Henry Poynting.
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(Maxwell’s equation)

(Maxwell’s equation)

Integrating over the volume 
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Vector divergence theorem 

as applied to the vector:
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

=P
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The right hand side represents the time rate of change of energy (electrostatic plus 

magnetostatic), that is, power in the volume plus the time rate of energy, that is, power 

lost in the volume.

 −=−
ss

SdSdHE


.P).( Represents the power going into the volume, one part of which stands 

for the time rate of increase in the energy stored  in the volume, and 

the other part stands for the power loss (ohmic loss) 

 =
ss

SdSdHE


.P).(

represents the power transmitted out of the volume.

(flux of Poynting vector             going out of the volume).

Poynting 

theorem 

involving 

instantaneous 

Poynting vector:




  −+



−== dEdHE

t
SdSdHE

s s

222 )
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2

1
(.P).(




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  ++



=−=− dEdHE

t
SdSdHE

s s

222 )
2

1

2

1
(.P).(



Therefore, with a change in sign

HE




HE


=P

With a change in sign
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Let us now appreciate Joule’s law for power loss in a straight wire carrying a 

direct current




  ++



=− dEdHE

t
SdHE

s

222 )
2

1

2

1
().(



(Poynting theorem involving instantaneous Poynting vector)

(recalled)

direct current: /t = 0




 =−
s

dESdHE 2).(


Power entering a volume enclosure is given by

There being no electric field existing outside the 

wire, the volume over which the integration of 

the right-hand side has to be taken is restricted 

to the region occupied by the wire. 

l =

l

V
E = in terms of the potential difference 

V between the ends of the length l

of the straight wire 
RI

R

V

l

V
l

l

V

EdESdHE
s

2
22
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1
)()(

).(

====

==−  










law) s(Ohm' IRV =



l
R

1
=
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=

Z

Wire 

surface

a

HEP


=

E


H


 =−
s

RISdHE 2).(


(rewritten)

(Joule’s law) Ohmic loss

(left hand side representing the 

power going into the wire that gets 

lost in the form of the so-called 

Ohmic loss)

A straight wire of length l and radius a

carrying a direct current showing the 

electric and magnetic field vectors and 

the Poynting vector that is directed 

inward to the wire, all on the surface of 

the wire

Cross-sectional view of 

the wire

If the direction of the direct current is made to reverse, which 

amounts to reversing the direction of the electric field as well, then 

the direction of the magnetic field also reverses, which 

consequently does not cause a change in the direction of the 

Poynting vector    .P HE


=
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HE


=P

Let us have a re-look at the problem of power loss in a wire carrying a direct 

current starting from the power density or Poynting vector at the surface of the 

wire of circular cross section.  

a

HEP


=

E


H


Cross-sectional view of 

the wire




a
a

I
H



2
=

zaEE


=

)relation   theof (in view
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P

rz

rz

aaa

a
a

I
Eaa

a

I
EHE





−=

−===






(azimuthal magnetic field at the 

surface of the wire of radius a due to a 

direct current I along z obtainable with 

the help of Ampere’s circuital law)  

Electric field directed along z due to a potential 

difference across the wire that sends the current 

through the wire also in the z direction 

)
2

()(P 


a
a

I
aE z


=

(directed radially inward)

Poynting vector
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P rz a
a

I
Eaa

a

I
EHE




 −===

law) s(Ohm' EJc


=

(conduction current density)

2aJI c=2aEI =
))(( 2a

I
E


=

(rewritten)

 
2))((2

P
2 rr a

a

I

a

I
a

a

I
EHE




−=−==

=− 
s

SdHE


).( Power going into the wire over a length l through the area 2al of its surface

radSSd


=

 =−−=−
s

rr

s

r

s

adSa
a

I

a

I
Sda

a

I

a

I
SdHE


.

2))((
.

2))((
).(

22 

RIal
aa

I
dS

aa

I
SdHE

s

2

2

2

2

2

)2(
2

1

))((2

1

))((
).( ===−  






aldS
s

2=
2

11

a

ll
R


==

(power going into the wire which is the ohmic loss, agreeing to what was obtained earlier 

as Joule’s law)
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In an interesting illustration, let us apply Poynting theorem to the problem of a parallel-

plate capacitor with circular plates of large dimensions compared to the distance 

between the plates to find the expression for energy density stored in electric field of 

the capacitor. 

a

d
E


H


HEP


=

Z

interface

Circular 

plate

Outside 

region

Inside 

region

a

HEP


=

E


H


A parallel-plate capacitor with circular plates 

of radius a showing the electric and 

magnetic field vectors and the Poynting 

vector that is directed inward to the wire, all 

at the interface between the inside and 

outside regions of the capacitor 

Cross-sectional view of 

the capacitor

HE


=P

Poynting vector

rzz a
a

dt

dE
Eaa

a

dt

dE
Ea

a

dt

dE
aEHE



222
 P   −====

zaEE


=

 a
a

dt

dE
H



2
= (deduced in Chapter 5 

using Maxwell’s equation)
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ra
a

dt

dE
EHE



2
 P −== (rewritten)




  ++



=− dEdHE

t
SdHE

s

222 )
2

1

2

1
().(


(Poynting theorem) (recalled)

Power going into the capacitor as indicated by the radially inward direction of the 

Poynting vector given by the above expression will cause a storage of energy in the 

capacitor with time. Consequently, only the first term will be significant in the 

following expression stating the Poynting theorem:  

  


=−=−

s s

dE
t

SdSdHE


 2

2

1
.P).(


Only the first term bring significant

 


=−

S

E

t

W
Sd


P




=







 dE
tt

WE 2

2

1
Integrating with respect to t

=


 dEWE

2

2

1 2

2

1
EU E =

(energy density stored in electric field)
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H

E

atHH

atEE




)cos(

cos

0

0





+=

=

HE

HE

aatttHE

aatttHEHE




−=

−=

)sinsincoscos(cos

)sinsincos(coscos

2

00

00





Time-averaged 

Poynting vector 

HEHE

HE

HE

aaHEaaHE

aa

td

ttdttd

HE

aa

td

tdttHE







==



−

=



−

=



 




















 





cos
2

1

2

)2
2

1
(cos

)(

)(cossin)(coscos

)(

)()sincoscos(cos

P

0000

2

0

2

0

2

0

2

00

2

0

2

0

2

00

average

(time-varying fields)

(time-varying field)

(time-varying field)

HE aattHEHE


+= )cos(cos00 

HE



HE aa


  and 

(unit vectors in the directions of electric 

and magnetic fields respectively)

Poynting vector in time-varying situations

 = phase difference between electric and magnetic fields
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H

E

atHH

atEE




)cos(

cos

0

0





+=

=
In phasor notation

H

H

E

atjHH

atjHH

atjEE







)(exp

)(exp

exp

0

*

0

0







+−=

+=

=

HE

HE

HE

aajHE

aajHE

aatjtjHEHE







−=

−=

+−=

)sin(cos

)(exp

))]()][exp([exp(

00

00

00

*







*

average Re
2

1
P HE


=

HE aaHEHE


= cos
2

1
Re

2

1
00

*

HE aaHEHE


= cosRe 00

*

Time-averaged Poynting vector

27

HE aaHE


= cos
2

1
P 00averageTime-averaged Poynting vector (rewritten)

(magnetic field typically leading 

electric field by a phase angle ).
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 
S

SdHE


).( (representing power transmitted out of a volume enclosure (as 

obtained earlier interpreting Poynting theorem involving 

instantaneous Poynting vector)

Time-averaged Poynting vector
*

average Re
2

1
P HE


= (for time-varying fields)

Obviously, with reference to time-varying fields,

represents the time-averaged power transmitted out of a 

volume as the interpretation of Poynting theorem for time-

varying fields.

 =
SS

SdSdHE


.P).Re(
2

1
average

*

28

The concept of time-averaged power transmitted out of a volume developed here finds 

practical applications, for instance, in the study of power loss in a conductor and radiated 

power from an antenna, to be taken up later here as well as in the study of transmission of 

power through a waveguide in the chapter to follow (in Chapter 9).    
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HE aaHE


= cos
2

1
P 00averageTime-averaged Poynting vector 

HE aaHEHE


= cos
2

1
Re

2

1
00

*

Time-averaged Poynting vector
*

average Re
2

1
P HE


=

*

complex
2

1
P HE


=

(Complex Poynting vector) (defined as)

average

**

complex PRe
2

1
)

2

1
Re(PRe


=== HEHE

(Definition of complex Poynting vector) 

complexP


We define complex Poynting vector               as follows:

averagecomplex PPRe


= (rewritten)

(recalled)

(recalled)

(recalled)
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Imaginary axis

Real axisA B

C

Power density triangle 

Power density triangle 

We can depict the power density vectors in a vector triangle on a 

complex plane obeying the following relation

BCABAC +=

Side of the triangle on the real axis represents the average 

power density vector or the real power density vector

Hypotenuse of the triangle represents the complex power 

density vector, also referred to as the virtual power density 

vector, the magnitude of which represents the apparent power 

density

AC

Side of the triangle on the imaginary axis represents the reactive 

power density vector 

AB

HE aajHEHE


−== )sin(cos
2

1

2

1
P 00

*

complex 

HE aaHE


= cos
2

1
P 00average

BC

HE aaHEHE


−=== sin
2

1
Im

2

1
PImP 00

*

complexreactive

(magnetic field typically leading 

electric field by a phase angle ).
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In an illustrative example let us obtain an expression for time-averaged power lost in a 

current-carrying straight wire in terms of the peak current and wire resistance.

 =−=
S

RtISdP 22

0 sinP


  =−=−
s s

RISdSdHE 2.P).(


We have already obtained earlier the expression for power going into the wire that gets 

lost in the form of the so-called Ohmic loss: 

Instantaneous power P going into the wire and getting lost 

tII sin0=

(recalled)

Taking the average over a complete cycle 








=

=

=

=

= ===
























2

0

2

0

22

0

2

0

2

0

22

0

average

22

0average

)(

)(sin

)(

)(sin

sin
t

t

t

t

t

td

tdtRI

td

tRdtI

RtIP

R being the wire resistance 

and I0 the peak current
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


=

=

==












2

0

2

0

22

0

average

)(

)(sin

t

t

t

td

tdtRI

P (rewritten)



 





=

= =

=

=














−

=

−

=






























2

0

2

0

2

0

2

0

2

0

2

0

2

0

)(

)(2cos
2

1
)(

2

1

)(

)(
2

2cos1

t

t t

t

t

td

tdttdRI

td

td
t

RI

02

)0sin4(sin
4

1
)02(

2

1

][

2

2sin

2

1
][

2

1

2

0

2

0

2

0

2

0

2

0

−









−−−

=





















−

=





















RI

t

t
tRI
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02

)0sin4(sin
4

1
)02(

2

12

0

average
−









−−−

=





RI

P (rewritten)

RI

RI
2

0

2

0

2

1

02

)00(
4

1
2

2

1

=
−









−−

=





(average power Paverage lost in the wire in the form of Ohmic loss)

Similarly, in another illustrative example let us find the average power going into a 

parallel-plate capacitor with circular plates.









====

==

H

Ez

atHatHa
a

tEa
a

dt

dE
H

atEatEE









 coscos
2

cos
2

sinsin

000

00

zaEE


=

 a
a

dt

dE
H



2
=

Electric and magnetic fields at the cylindrical 

interface between the inside and outside 

regions of the parallel-plate capacitor 

(recalled)

))(cossin(P 00 HE aatHtEHE


==  (Poynting vector) (instantaneous)

say ,00 HE =
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0
02

)00(
2

1

)(

)(sin)(sin

)(

)(cossin

cossinP

00

2

0

2

0

00

2

0

2

0

00

average00
average

average

=
−

−

=



=



=

==









=

=

=

=




























HE

t

t

HE

t

t

HE

HE

aaHE

td

aatdtHE

td

aatdttHE

aattHEHE







))(cossin(P 00 HE aatHtEHE


==  (Poynting vector) (instantaneous)

Averaging over a cycle

 −=−
ss

SdHESd


).(.P

Power going into the capacitor

0.Paverage =− 
s

Sd


Average power going into the capacitor found to be nil

Power alternately goes in and out of the capacitor since the direction of the Poynting vector 

becomes radially inward and outward at the cylindrical interface between the  inside and 

outside regions of the capacitor at consecutive quarter cycles, which makes the average 

power going into the capacitor nil. This is as also found analytically above. 

)(cos)(sin ttdtd  =
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Consider a uniform plane wave propagating along z which is incident on the surface of a 

conducting medium (1) of conductivity  from a free-space medium (2).  

35

Power loss per unit area

in a conductor

(2)

(1)

Interface
•

Z

X

Free-space 

medium

Conducting 

medium

Y

H O

E

a an z= −

(relation between electric and magnetic field 

components of a conducting medium in terms 

of its intrinsic impedance ; see Chapter 6)

conductor) (good j








 0

0

0 j

j

j

H

E

H

E

x

y

y

x 
+

==−=

sss ZjXRj
j

=+=+==













22

000

(separating the real and imaginary parts by the 

method explained in Chapter 6)

(intrinsic impedance  being equal to surface impedance Zs comprising 

surface resistance and surface reactance of the conducting medium)  

sss

y

x ZjXR
H

E
=+==
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(average power density propagating through the conductor along z)

(2)

(1)

Interface
•

Z

X

Free-space 

medium

Conducting 

medium

Y

H O

E

a an z= −sn JHa


= 2

syyz JaHa


=−
xyyyzs aHaHaJ


=−=

(electromagnetic boundary condition at the 

interface between the conducting medium (1) 

and the free-space medium (2) recalled from 

Chapter 7) 

zn aa


−= (unit normal vector being directed 

from medium 1 to 2 in the 

negative z direction)

*

***

****

average

2

1

)Re(
2

1
)Re(

2

1
)Re(

2

1

Re
2

1
)(Re

2

1
)()Re(

2

1
Re

2

1
P

yys

yyssyysyy

zyxyxyxyyxx

HHR

HHjXRHHZHH

aHEaaHEaHaEHE

=

+===

====





Time-averaged Poynting vector

(surface current density)

(surface current density)

sss

y

x jXRZ
H

E
+=== (recalled)

Power loss per unit area in the conductor



37

**

2

1

2

1
sssyys JJRHHR ==



*

average
2

1
P yys HHR=


(power loss per unit area in the conductor)  (rewritten)

xyyyzs aHaHaJ


=−= (recalled)

**

yyss HHJJ =


Power loss per unit area in the conductor

The expression finds extensive application in finding resistive or Ohmic loss in 

electromagnetic structures such as waveguides (in estimating attenuation constant) 

and resonators (in estimating quality factor) (taken up in Chapters 9 and 10 

respectively to follow). 
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Power absorbed per unit area 

In a simple illustrative example let us calculate the incident power density and the 

power absorbed per unit area in a sheet of brass of conductivity  = 1.5x107 mho/m on 

which a uniform plane wave is incident with a peak electric field of 1 V/cm at 10 GHz.  

(given) V/m 100 V/m 10 ==xE
ohm 3771200 == 

(peak incident electric field)

(Free-space intrinsic impedance)
0

0
0


x

y

E
H =

(peak incident magnetic field)

A/m 
377

100
0 =yH

2
2

00  W/m26.13
377

)100(

2

1

2

1
=== yx HEIncident power density

2

0 )(
2

1
yS HR=



 0f
RS =

2232

7

710
2

0
0 mW/m 8.1 W/m108.1)

377

100
)(

105.1

10410
(

2

1
)(

2

1
==




== −

−




yH

f

Hz101010GHz 10

 mho/m 105.1

109

7

===

=

f



Given

H/m 104 7

0

−= 
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Complex Poynting vector theorem




  ++



=−=− dEdHE

t
SdSdHE

s s

222 )
2

1

2

1
(.P).(



Let us recall Poynting theorem involving instantaneous Poynting vector:

22; HHHEEE ==


EJc


=




  ++



=−=− dJEdHHEE

t
SdSdHE c

s s


)(

2

1
.P).(

(Poynting theorem involving instantaneous Poynting vector 

expressed in different forms)




  ++



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).().().( HEEHHE
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−=

(vector identity)

Poynting theorem involving instantaneous Poynting vector:

we have already deduced

Starting from

P


=HE

(vector identity)

let us now proceed to deduce Poynting theorem involving complex Poynting vector:

Similarly, starting from

*** .).( HEEHHE


−=
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Poynting theorem involving complex Poynting vector
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(vector identity)
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(Maxwell’s equation)
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 −−−=

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(Poynting theorem involving complex Poynting vector) 

 =
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
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

Vector divergence theorem 

as applied to the vector:
*HE




Dividing by 2

With a change in sign



43

).().().( HEEHHE


−=

(vector identity)

Poynting theorem involving instantaneous Poynting vector:

we have deduced
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Poynting theorem involving complex Poynting vector:
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Re
2

1

PReP

HE

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=

(real part of the expression stating 

the Complex vector theorem and 

the balance of real power)

(imaginary part of the expression stating 

the Complex vector theorem and the 

balance of reactive power)
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After a simple algebra

Left-hand side represents the 

average power entering a 

volume enclosure while the 

right-hand side represents the 

average Ohmic loss of power in 

the volume enclosure

(real part of the expression stating 

Complex vector theorem and the 

balance of real power)

(imaginary part of the expression stating 

the Complex vector theorem and the 

balance of reactive power)

Left-hand side represents the reactive power 

flowing into a volume enclosure while the right-

hand side is equal to 2 times the difference 

between the average energies stored in electric 

and magnetic fields in the volume. 
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Power flow in 

conduction current antennas

A conducting element through which an oscillating current passes can radiate 

electromagnetic energy. 

We may be interested to radiate out electromagnetic energy into space either in 

many directions or in a specific direction at the terminating end of the transmission 

line. In order to implement the radiation of electromagnetic energy, a transmission 

line is terminated in a radiating system called the antenna. Further, at the 

receiving end we need to have a receiving antenna to receive electromagnetic 

energy from space and subsequently make it propagate through a transmission 

line in a receiving system. We can apply the concept of vector potential to study 

some of the fundamentals of conduction current antennas such as a dipole 

antenna. 

Infinitesimal Hertzian dipole

The infinitesimal dipole, also called the Hertzian dipole, is an oscillating filamentary current 

element of infinitesimal length over which the amplitude of the current remains uniform. 

Although the infinitesimal dipole is not a practical antenna, the results of its analysis are of 

immense significance in establishing a number of important concepts of practical antennas. 

Further, a finite-length dipole can be considered as constituted by a number of individual 

infinitesimal dipoles, and therefore the results of analysis of an individual infinitesimal 

dipole can be integrated to obtain the results of a finite-length dipole antenna.  
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Let us analyse the infinitesimal dipole in spherical 

coordinate system of coordinates (r,,), considering 

the element of length dl of the current element at the 

origin of coordinates. 

For the sake of convenience, let us consider the 

current element as aligned along z in free space. 

Over the infinitesimal length dl, the current I of the 

element is considered as constant.   

(recalled from Chapter 5)

(with the factor exp(jt) understood)

Vector potential component along z 

at the point P (r,,) due to the 

current element at the origin (0,0,0) 
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Similarly using the expression for the gradient of a scalar given in Chapter 2, we an 

find the gradient of the scalar, here being the divergence of the vector potential, the 

latter given by the above expression, as follows: 

Further, similarly using the expression for the curl of a vector given in Chapter 2, we 

can write the expression for curl of the vector potential as follows:
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Infinitesimal 

dipole field 

components put 

together

At large distances from the infinitesimal dipole, we 

can ignore the terms containing higher powers of r

in the denominators of the field expressions 
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Infinitesimal dipole far-field 

components 

0


 =
H

E
(far-field wave impedance of an infinitesimal dipole

becoming equal to free-space intrinsic impedance) 

Time dependence exp(jt) 

is understood in field 

expressions here and in the 

analysis to follow
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Power radiated at large distances from an infinitesimal dipole 
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Taking the real part

Let us now find the power radiated out from the 

infinitesimal dipole in all directions.

 rdraHEadSHEadSdP rrr sin2)Re(
2

1
)Re(

2

1
P **

average


===

Element of power dP propagating through an annular disc of 

element of area dS = 2rsinrd at an angle  on the surface 

of a sphere of radius r
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(rewritten)
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3
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2
2

0 IdlP



=

 120/ 000 ==

 /2=

2

2240 







=




dl
IP (power radiated out at large distances from an 

infinitesimal dipole in all directions)

We are going to use later the above expression for 

radiated power in the further study of the property of an 

infinitesimal dipole
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Power (reactive power) associated with near-field quantities of an 

infinitesimal dipole
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(infinitesimal dipole field 

components)  (recalled)

Significant field quantities are those 

involving higher powers of r in in the 

denominators for distances close to 

the infinitesimal dipole  

(near-field components of an infinitesimal dipole)
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(near-field components of an infinitesimal dipole) 

(rewritten)quantitiesimaginary each  are  and **

 HEHE r

quantityimaginary an  becomes 
2

1
P *

complex HE


=

0Re
2

1
P *

average == HE


Near-field quantities do not correspond to the 

propagation of power. The power associated with these 

quantities is of non-radiative type, which can also be 

referred to as the reactive power. It is implied that the 

non-radiative power associated with the near-field 

quantities would be retured to source, feeding this power 

to the infinitesimal dipole. 
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Directive gain and directivity of an infinitesimal dipole
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IP (power radiated out at large distances from an 

infinitesimal dipole in all directions) (recalled)
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The average power density, that is, the average power per unit area radiated out

of an infinitesimal dipole, W0 , is obtained by dividing P by the area of the sphere

4r2 of radius r:

(average power density being also the power density radiated out 

by an equivalent isotropic radiator that radiates equally in all 

directions, whose power P equals to that of the infinitesimal dipole)

(power density in the direction )

2

0
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2

3
==
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Dg Directive gain of an infinitesimal dipole

5.1
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2

3
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3 22

0 ==== D Directivity (maximum directive gain) of an 

infinitesimal dipole

(power density in the direction )
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(radiation resistance of an infinitesimal dipole)

Radiation resistance of an infinitesimal dipole

2

2240 
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


dl
IP (Time-averaged power for time-harmonic current with 

an  amplitude I radiated out at large distances from an 

infinitesimal dipole in all directions) (recalled)
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The radiation resistance Rr of an infinitesimal dipole is the resistance of an 

equivalent resistor that consumes the same power as that radiated out at large 

distances from an infinitesimal dipole in all directions, namely P: 

2
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
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
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dl
Rr

Radiation pattern of an infinitesimal dipole

The radiation pattern of an antenna is the graphical representation of the radiation properties of 

the antenna with respect to related variables such as the field strength and power density as a 

function of space. Although the radiation pattern is three-dimensional, it is common to describe it 

in two planar patterns (obtained by making two slices through the three-dimensional pattern): E-

plane and H-plane patterns, where the E-plane is the plane containing the electric field vector 

and the direction of maximum radiation from the antenna and the H-plane is the plane containing 

the magnetic field vector and the direction of maximum radiation from the antenna. 

θ

Z

Horizontal (H-plane) pattern vertical (E-plane) pattern

Infinitesimal dipole 

aligned vertically 
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The radiation pattern may can be plotted  either as the horizontal pattern or the vertical pattern 

depending on  whether the pattern is plotted on 

• the horizontal plane ( = /2) on which the value of  does not vary and remains constant at 

the value  = /2 and the value of  varies  (H-plane pattern),

or

• the vertical plane on which the value of  remains constant ( = constant) and the value of 
varies (E-plane pattern).

θ

Z

Horizontal (H-plane) pattern vertical (E-plane) pattern

Infinitesimal dipole 

aligned vertically 

In the light of this nomenclature of the radiation pattern, the horizontal pattern (H-plane pattern)

( = /2) is a circle corresponding to the constant amplitude of E . On the other hand, the

vertical pattern (E-plane pattern) ( = constant) depends on the angle , the amplitude of E

becoming zero and maximum for  = 0 and  = /2, respectively. Thus, the shape of the

vertical pattern (E-plane pattern) becomes the figure of infinity () and remains azimuthally

symmetric (/ = 0) about the axis of the dipole.
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 2
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15
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




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dl

r

I
W (power density in the direction )

Takes on maximum values at  = /2 

corresponding to sin2 = 1 

Takes on half the maximum values at  = /4 and 
= 3/4 corresponding to sin2 = ½ , which in turn 

leads to the half power bandwidth (HPBW) 

(infinitesimal dipole)

Half-power bandwidth (HPBW) of an infinitesimal dipole

2/)4/()4/3(HPBW  =−=

Effective aperture area of an infinitesimal dipole

The antenna is used not only to radiate power in the transmitting mode, but also to receive

power and deliver it to a load in the receiving mode. Interestingly, an antenna enjoys

identical radiation and circuit characteristics in transmitting and receiving modes according to

the reciprocity theorem of circuit theory:

In any linear network containing bilateral linear impedances and energy sources, the 

ratio of the voltage on one mesh to the current in another mesh would remain 

unaltered if the voltage and the current were interchanged, the other sources being 

removed. 
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-
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Transmitting and receiving 

antennas #1 and #2 separated by a 

distance showing the voltages and 

currents at their respective 

terminals   

Network equivalent of the system 

of transmitting and receiving 

antennas #1 and #2 showing the 

voltages and currents at the input 

and output terminals   
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+=
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2221212

2121111

IZIZV

IZIZV Circuit voltages and currents related by circuit 

impedances in the equivalent network 

1111 IZV =

012 =Z (Transmitting mode of antenna #1) 

(transfer impedance taken as nil for antenna #2 

considered far from antenna #1)

1

1
11

I

V
Z = Self impedance of antenna #1 

2121111 IZIZV += (receiving mode of antenna #1) 

012 Z (providing coupling between 

antennas #1 and #2)
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2121111 IZIZV +=

(receiving mode of antenna #1) 

(recalled)

+

Z11

Zl Z12I2

Equivalent network of antenna #1 in 

the receiving mode 

emf of constant voltage 

source

Internal impedance of 

constant voltage source
Load 

impedance

Rl

Zl=RL+jXL El

Rr

XA

Equivalent network of the infinitesimal 

dipole in the receiving mode 

emf of the constant voltage source 

Z12 I2 taken on the infinitesimal 

dipole of length l as the voltage 

induced El, with electric field E

assumed over the length l

(receiving mode)

rRR =11

Ar jXRjXRZ +=+= 111111

AXX =11

(radiation resistance)

(antenna reactance)

22 )()( Alrl XXRR

El
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+++
=

(amplitude of current  through the 

equivalent network) 
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Power delivered to the load 
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maxoad, ===

Alrl XXRR ==  and (under maximum power transfer condition)

(maximum power transferred to load)

W

P
Ae

load=
W

P
Ae

maxload,

max, = Effective aperture area Ae defined 

in terms of power density W

incident on the antenna 

(maximum effective 

aperture area)

W
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lE
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max, = (maximum effective aperture area) (rewritten)
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Interpreting with reference 

to an infinitesimal dipole

EH

R

lE

A r
e

2

1

8

22

max, =
2

2
280



l

Rr =

 1200 ==
H

E





8

3 2

max, =eA (maximum effective aperture area of an infinitesimal dipole)
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0 =D (directivity of an infinitesimal dipole)
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Ae Ratio of maximum effective aperture area to directivity of an infinitesimal dipole
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(recalled)

(recalled)

Directive gain Dg of an antenna in terms 

of power density W radiated in a given 

direction and power P radiated in all 

directions

Let us take two arbitrary antennas #1 and #2 separated by a distance r and let Dg1 and Dg2

be their directive gains in the direction of antennas #2 and #1 respectively; and further let 

Pt1 represent the power transmitted by antenna #1 in all directions. 

1

2
2

W

P
A r

e =

W

P
Ae

load= (recalled)

Interpreting Pload as power recived Pr2

by antenna #2

Eliminating W1

Constancy of antenna effective 

aperture area-to-directive gain ratio 
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= (recalled) (relation holding good for antenna #1 in transmitting 

mode and antenna #2 in receiving mode)  

Corresponding relation if we now take antenna #2 in transmitting mode and 

antenna #1 in receiving mode
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D

A
= (rewritten)

Since antennas #1 and #2 are arbitrarily chosen, we conclude from the above relation 

that the ratio of the effective aperture area to directive gain is a constant quantity 

irrespective of the antenna system. The relation obviously holds good also when we take 

the maximum value of the effective aperture area (Ae = Ae, max) and the maximum value 

of the directive gain, the latter being the directivity (D01 = D02). Therefore, we also get the 

ratio of the effective aperture area to directive gain as a constant quantity irrespective of 

the antenna system, enabling us to write: 

02

max,2

01

max,1

D

A

D

A ee
=

constant
0

max,
=

D

Ae

(irrespective of antenna)





4

2

0

max,
=

D

Ae

(found already for a particular antenna, 

namely, the infinitesimal dipole)





4

2

0

max,
=

D

Ae

(valid for any type of antenna)
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D/2 cosθ
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θ

Consider an antenna with its significant linear dimension as D and an observation point P at a 

distance r from its mid-point O. We can find the different ranges of an antenna depending upon 

the relative value of r with respect to the antenna dimension D and wavelength .
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2

D
rR −

N

D/2

P

θ

D/2 cosθ

O

At large distances AP 

and OP tend to 

become parallel 

A

Antenna far-field and  

Near-field zones
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sin
8

)cos
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........)cos1(cos
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)cos1(
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(
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cos
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3
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2

2
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3

3
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2
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2/1

2

2
2/1

2

2

+++−=

+−+−+−=









−−=








−+=







r

rD

r

rDD
r

r

rD

r

rDD
r

r

D

r

D
r

r

D

r

D
rR

At large distances, we can ignore the second, third and higher order 

terms, in view of r and its higher powers appearing in the 

denominators of these terms

cos
2

D
rR −

(expression that agrees to what we obtained earlier from geometrical consideration)
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IRE sets a standard to ignore the second and higher order terms with respect to the first term 

in the above expression so that one is able to use the following expression in the far-field 

zone:

cos
2

D
rR −

Hence, as per IRE standard, one may assign a phase difference  equal to /8

corresponding to the path difference equal to the maximum value of the second term namely

88

2
maximum) difference(Path 

2
difference Phase

2

2 








===

r

rD

........sincos
16

sin
8

)cos
2

( 2

3

3
2

2

2

+++−= 
r

rD

r

rDD
rR (recalled)

(far-field expression)

2

2

2

sin
8r

rD

2

2
2

2

2
2

2

2

8
2/sin

8
sin

8
differencepath  of  valuemaximum

r

rD

r

rD

r

rD
=== 

(set by IRE standard)



22D
r =

 rD /2 2 (far-field zone)
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We next find the condition for distances that enables us to ignore the third and higher order 

terms in view of r and its higher powers appearing in the denominators of these terms, 

however retaining the second and first terms. Again, according to IRE standard, we set the 

value /8 for the phase difference corresponding to the maximum value of the third term,

namely

........sincos
16

sin
8

)cos
2

( 2

3

3
2

2

2

+++−= 
r

rD

r

rDD
rR (recalled again)

33

2
sincos

3

1
cos;

3

2

12

2
sin;2tan

0)sin(sin)cossin2(cos

0)sin(cos

2

2

2

=

==
+

==

=−+

=








d

d

Condition for the maximum 

value of the third term
(third term) 2

3

3

sincos
16r

rD

33

2

16 3

3

r

rD

(maximum value of 

the third term)
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33

2

16 3

3

r

rD

........sincos
16

sin
8

)cos
2

( 2

3

3
2

2

2

+++−= 
r

rD

r

rDD
rR

Recalled

(maximum value of the third term)

33

2

16
differencepath  of  valuemaximum

3

3

r

rD
=

833

2

16

2
maximum) difference(Path 

2
difference Phase

3

3 








===

r

rD
(set by IRE standard)



33

62.0
33

2 DD
r ==

/62.00 3Dr  (near-field zone)
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Thus, with reference to antenna we can identify the following zones: 

zone) ate(intermedi  /2/62.0

zone) field-(near  /62.00 zone); field-(far/2

23

32





DrD

DrrD





We may note the following points of interest with respect to the above three zones:







rD

DrD

Dr







/2

/2/62.0

/62.00

2

23

3

In reactive near-field zone, the field amplitude factor and the phase contributions from the 

secondary source elements from the antenna both vary with the change in the position of the 

receiving point. Also, in this region, the reactive power dominates significantly over the 

radiative power (                 as has been shown earlier with reference to an infinitesimal 

dipole). In other words, the near-field quantities do not correspond to the propagation of 

power. The power associated with these quantities is of non-radiative type, which can also 

be referred to as the reactive power.

In radiative near-field zone (Fresnel region), the phase contributions from the secondary 

source elements from the antenna vary though the amplitude factor 1/r remains constant as 

the position of the receiving point is varied. Also, in this region, the radiative power is greater 

than the reactive power.

In radiative far-field zone (Fraunhofer region), the amplitude factor 1/r as well as the phase 

contributions from the secondary source elements from the antenna remains constant as the 

position of the receiving point is varied. Consequently, the field pattern becomes 

independent of the position of the receiving point. Also, in this region, the radiative power 

dominates significantly over the reactive power.

Reactive near-field zone:

Radiative near-field zone (Fresnel region):

Radiative far-field zone (Fraunhofer region):

0Paverage =




76

Let us now proceed to relate the power received and delivered to a load by a receiving 

antenna to the power transmitted by a transmitting antenna at a distance in terms of their 

respective power gains and wavelength corresponding to the operating frequency. 

We will derive the relation under the condition that the receiving antenna is placed in the 

direction of the maximum power density radiated by the transmitting antenna and that 

the maximum power is delivered to the load.

Pt1, input

Pt1, output=e1Pt1,input

e2W1

W1

Transmitting and receiving antennas #1and 

#2 showing the powers at the input and 

output of the transmission lines connected to 

the antennas #1and #2 respectively 

input,11output,1 e tt PP =

In the transmitting mode the antenna is 

connected to a source of power by a 

transmission line. Similarly, in the receiving 

mode, the .antenna is connected to a load by a 

transmission line. Due to losses in the 

transmission line, the power at the output end 

of the transmission line of the antenna is less 

than the power at its input end by a factor 

called the efficiency of the antenna.

e1 is defined as the efficiency of the transmitting 

antenna, the subscript 1 referring to the 

transmitting antenna taken as antenna #1 and 

the subscript t standing for transmitting mode 

Friis transmission equation
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input,11output,1 e tt PP =

Pt1, input

Pt1, output=e1Pt1,input

e2W1

W1

2

input,1

1

1

1

4

e

1

r

P

W
D

t
g



=

as) (defined 

4

densitypower  average

2

input,1

1

1
1

r

P

W

W
G

t



=

=

111 egDG =

(rewritten)

2

11

1
4 r

DP
W

gt


= (recalled)

Power density due to 

antenna #1 present at the 

input of the transmission 

line connected to 

antenna #2

(recalled)

2

1

1
1

4 r

P

W
D

t
g



=

With the help of the relation

(recalled) )e as taken with ( input,111 tt PP

2

input,1

1
11

4

e

r

P

W
D

t
g



=

On comparing 
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12

output,2

2
e W

P
A

r

e =

With reference to antenna #2, 

effective aperture area may be put as 

Pt1, input

Pt1, output=e1Pt1,input

e2W1

W1

Power density due to antenna #1 

appearing at the output of the 

transmission line connected to 

antenna #2 

Power received at the output of 

the transmission line connected 

to antenna #2 (transferred to the 

load) 

2

input,1

1
11

4

e

r

P

W
D

t
g



= (recalled)

2

2112

input,1

output,2

4

ee

r

DA

P

P ge

t

r


=

Eliminating W1
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 esimilarly  and e 222111 gg DGDG ==
2

21

input,1

output,2
)

4
(

r
GG

P

P

t

r




=

2

2112

input,1

output,2

4

ee

r

DA

P

P ge

t

r


= (rewritten)





4

2

0

max,
=

D

Ae

(valid for any type of antenna)





4

2

2

2 =
g

e

D

A

Under the assumed condition of 

maximum power transferred to the 

load connected to antenna #2





 44

ee 2

2

2211

input,1

output,2

r

DD

P

P gg

t

r
=

(Friis transmission equation)

Let us take up an example to illustrate Friis transmission equation. Take two identical 

antennas having the same gain ⎯one transmitting power while the other receiving 

it⎯ both having significant dimension given as 20 cm. The antennas are separated 

by a distance equal to 1.5 times the minimum distance prescribed by Fraunhofer 

radiative far-field zone, arranged in a measurement setup using 10 GHz  operating 

frequency. Calculate the antenna gain if the received power measured is 20 dB below 

the transmitted power. 

Let us begin with finding the distance r between the antennas according to its limit given in 

terms of Fraunhofer radiative far-field zone:           ./2 2  rD 
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cm 400)20(
3

)20(2
5.1

2
5.1 2

22

====


D
r

(given)  dB 20log10 10 =
r

t

P

P

cm 3
1010

103
9

10

=



==

f

c


(given)  cm 20=D

(given)  Hz 1010GHz 10 9==f

2
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output,2
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1
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 2log10 =
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P

r

t

P

P
=2102
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input,1

output,2
)

4
(

r
GG

P

P

t

r




=

210

1
=

t
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P
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2

212
)

4
(

10

1

r
GG




=

22

2
)

4
(

10

1

r
G




=

antennas) (identical

say   21 GGG ==

cm 3=

cm 400=r

(recalled)

)
4

(
10

1

r
G




=

167.47
3

404
=


=


G

dB 39.22239.210

47.167log10(dB) 10

==

=G
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Let us now appreciate a method, well known as three-antenna method, based on 

Friis transmission equation, to find the gain of an antenna, if you can measure the 

power transmitted by an antenna and the power received by another antenna for a 

given operating frequency. 

















=

=

=

21

3132
3

31

2132
2

32

3121
1

))((

))((

))((

GG

GGGG
G

GG

GGGG
G

GG

GGGG
G

2

21

1

2 )
4

(
r

GG
P

P

t

r




= (given by Friis transmission equation)

Let us have three antennas labeled as #1, #2 and #3 respectively. Since we can measure 

power received Pr2 by antenna #2 due to power transmitted Pt1 by antenna #1 at a known 

distance r, we can use the following relation given by Friis transmission equation in terms of 

the antenna gains G1 and G2 and the wavelength  corresponding to the operating frequency: 

2

1

2
21 )

4
(


 r

P

P
GG

t

r= fc =

2

1

2
21 )

4
(

c

rf

P

P
GG

t

r 
=

Physical quantities in the right hand side can be 

measured and hence we can determine the 

gain product G1G2. Following the same 

approach, we can then determine G1G2 and 

G2G3 as well. 

Hence the gains of all the 

three antennas can be 

determined.
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Finite-length dipole

(radiation resistance of an infinitesimal dipole)

2

280 







=




dl
Rr

(power radiated out at large distances from an 

infinitesimal dipole in all directions) (recalled)
rRIP 2

2

1
=

(recalled)

Radiation resistance of an infinitesimal dipole is very small since its length dl << .

Power P radiated out at large distances from an infinitesimal dipole in all directions 

becomes very small unless we increase the current I to a very large value.

Therefore, let us look forward to more practical antennas such as the finite-length 

dipole for a higher value of the radiation resistance and consequently a lesser amount 

of current through it required for a larger radiated power. 
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λ/4

M S

N T

λ/4

λ/4

S'

M'

N'

T'

Open-ended two-wire transmission line 

showing standing-wave current 

distribution on it by dotted curve

Open-ended two-wire transmission line 

with wires bent at right angles at the open 

ends to form a centre-fed, finite-length 

dipole showing standing-wave current 

distribution on it by dotted curve

M and N are points on the two wires 

equidistant from their respective ends 

S and T. Typically, MS = NT = /4 for a 

centre-fed, half-wave (/2) dipole to 

be made out of the wires of the line. 

M/ and N/ are the points of bending 

equidistant from their respective 

ends S/ and T/. 

Typically, M/S/ = N/T/ = /4 for a 

centre-fed, half-wave (/2) dipole to 

be made out of the wires of the line. 

The current is nil at the open ends of 

the line or dipole and the current 

distribution typically on a centre-fed, 

half-wave (/2) dipole of length l = /2

may be represented as 

zIzII





2
coscos 00 ==

)]4/(2/0)4/(2/[  =−=− ll

(z is measured from the middle of the dipole: z = 0)
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A

B

M

N

l/2

l/2

|z|

|z|

r

|z|cosθ

|z|cosθ

r+|z|cosθ

=r-z cosθ

r-|z|cosθ

=r-z cosθ

θ

P

O

Finite-length dipole of length l = MN aligned 

vertically along z showing two infinitesimal current 

elements at the points A and B and a distant point 

P where the field of the dipole is sought 

l=MN

2/ONOM l==

Distance of the point A from the middle 

O of the dipole

zz ==

zz −==

Distance of the point B from the middle 

O of the dipole

 coscosAP zrzr −=−=

r=OP

(interpreted as positive for the positive half OM of the dipole) zz =

 coscosBP zrzr −=+=

(interpreted as negative for the negative half ON of the dipole) zz −=
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zIzII





2
coscos 00 ==

A

B

M

N

l/2

l/2

|z|

|z|

r

|z|cosθ

|z|cosθ

r+|z|cosθ

=r-z cosθ

r-|z|cosθ

=r-z cosθ

θ

P

O

)]4/(2/0)4/(2/[  =−=− ll )exp(sin
4

0 rjIdl
r

j
E 




 −=

(infinitesimal dipole far-field quantity recalled)
(dipole current distribution) 





−

−−
−

+

−−
−

==

0

4/

0
0

4/

0

0
0

))cos(exp(sincos
)cos(4

))cos(exp(sincos
)cos(4

















dzzrjzI
zr

j

dzzrjzI
zr

j
dEE

Integrating the contributions from infinitesimal dipoles distributed over the entire 

length l = /2 of a half-wave dipole comprising two halves each of length l = /4

(azimuthal electric field component at P due to a half-wave dipole)
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



−

−−
−

+

−−
−

==

0

4/

0
0

4/

0

0
0

))cos(exp(sincos
)cos(4

))cos(exp(sincos
)cos(4

















dzzrjzI
zr

j

dzzrjzI
zr

j
dEE

(azimuthal electric field component at P due to a half-wave dipole)  (recalled)







−−+







−−=





−

)))cos(exp(cos

))cos(exp(cos
4

sin

0

4/

4/

0

00














dzzrjz

dzzrjz
r

Ij
E

rzr − cosApproximated by putting in the denominators: 







+








−=


−

)))cosexp(cos))cosexp(cos

)exp(
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4/

0

00














dzzjzdzzjz

rj
r

Ij
E

After rearrangement of terms
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)sincoscos(
sin

)cosexp(
))cosexp(cos  of In view

2
zzj
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dzzjz 
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(rewritten)
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

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
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Rewritten
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Simplifies to
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


cos
2

expexp
=

−+ jj


















−+

−=












 2

00

sin

cos
2

expcos
2

exp

)exp(
4

sin
jj

rj
r

Ij
E












sin

cos
2

cos2

)exp(
4

00










−= rj
r

Ij
E

0


 =
H

E
























−
=










−=























sin

cos
2

cos2

)exp(
4

sin

cos
2

cos2

)exp(
4

0

0

rj
r

jI
H

rj
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(relation derived earlier for an infinitesimal dipole 

continuing to be valid for a half-wave dipole) 

(half-wave dipole)

(half-wave dipole)
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
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






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






















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2
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)exp(
4
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cos
2

cos2

)exp(
4

0
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r

jI
H

rj
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Ij
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(half-wave dipole)

(rewritten)

dP being the element of power radiating 

through an annular disc of element of area dS

= 2rsinrd at an angle  on the surface of a 

sphere of radius r

(power radiating through a sphere of radius r thus found 

using the same approach as that followed earlier while 

finding such power for an infinitesimal dipole) 

(half-wave dipole)
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 1200 =




































=












0

2

2

0
0 sin

sin

cos
2

cos2

4
rdr

r

I
P (rewritten)











=









0

2

2

0
sin

cos
2

cos

30 dIP

218.1
sin

cos
2

cos

0

2

=



















d









=









0

2

sin

cos
2

cos

60 dRr

rRIP
2

0
2

1
=

ohm  08.73218.160 ==rR

(evaluated numerically)

(half-wave dipole)

(power related to radiation 

resistance recalled)

(radiation resistance of a 

half-wave dipole)
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









=









0

2

2

0
sin

cos
2

cos

30 dIP

2

0

2

2

0

0
4

sin

cos
2

cos

30

r

dI

W




















=

(recalled)

Dividing by 24 r

(Average power per unit area  radiated out of a 

half-wave dipole or power density of an isotropic 

radiator equivalent to half-wave dipole) 



93

2

2

2

00

*

sin

cos
2

cos2

4

1

2

1
)Re(

2

1
)Re(

2

1




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
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
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
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1
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

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
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


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



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


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 r
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Power density of the half-wave dipole in the direction 
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
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



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


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
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
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
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

sin

cos
2

cos2

)exp(
4
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4

0
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jI
H
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Ij
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(recalled)

 1200 =

(half-wave dipole)
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
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
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
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













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
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(rewritten)
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0

0
4
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2
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r

dI

W




















=

(directive gain) (half-wave dipole)
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2
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0

2

=














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


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
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
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(directive gain) (rewritten)

218.1
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2





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









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

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
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Maximised by taking  
2


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218.1
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



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
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








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=









D (directivity) (half-wave dipole)
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)exp(
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
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−= rj
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E (half-wave dipole) (recalled)
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cos2
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0000

maxamplitude

00
amplitude

2

1

sin

cos
2

cos
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maxamplitude
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=










=









E

E
Value so assigned makes the square 

of the normalised quantity equal to ½ 

corresponding to half power 

bandwidth HPBW

The angle between the two solutions can be 

found numerically as 780.

HPBW = 780



Antenna type
Radiation 

resistance
Directivity HPBW

Infinitesimal 

dipole
Insignificant 1.5 900

Half-wave dipole 73.08 ohm 1.64 780

Comparison between infinitesimal and half-wave dipoles

The radiation resistance of a finite-length antenna such as the half-wave dipole is higher than that of an

infinitesimal dipole. This calls for lesser required current for a finite-length antenna than for an infinitesimal

dipole.

It often becomes necessary to beam power from an antenna in one specified direction.

How much an antenna is capable of doing so can be estimated both by the antenna HPBW and the

directivity, the latter rather more quantitatively.

Both the HPBW and the directivity of a finite-length antenna are greater than those of an infinitesimal dipole.

One can increase the directivity of an antenna by designing its geometry/shape and size. However, such an

approach becomes somewhat difficult to implement and often leads to an inconvenient antenna

geometry/shape and size for a practical antenna design.

The alternative approach is to use linear (one-dimensional), planar (two-dimensional) or volume (three-

dimensional) array of identical antenna elements. Moreover, such an array antenna provides means to steer

the beam of the antenna electronically rather than mechanically, say, by physically rotating a bulky antenna.

For the sake of simplicity, let us consider here for analysis a uniform linear array of identical antenna

elements.
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θ

d

d cosθ

An array of elements showing the 

direction of a distant observation point 

and correspondingly parallel rays of 

radiated waves from the elements in the 

same direction 

 += cosd

Successive (progressive) phase difference ψ

between the electric fields due to uniform 

array of identical antenna elements at a large 

distance from the array 

 = wave phase propagation constant

d = distance between successive array 

elements

 = angular direction of the observation 

point from the line of array

 = excitation phase difference between 

successive array elements, being the 

excitation phase lead of an element with 

respect to the next lower order element 

With due consideration to the above progressive phase difference ψ, let us next draw the 

vector diagram for the electric field due to each of the array elements at a large distance 

from the array and subsequently take the vector sum of the contributions from all the 

elements of the array. 

Linear array of 

antenna elements
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2
OAA 12

 −
=

=== 543432321 AASAASAAS

5443322151 AAAAAAAA AA +++=

Vector diagram for electric fields due to array elements #1, #2,  #3 and 

#4 at a large distance from the array considering typically four elements,

showing also the vector sum 

O

A1

ψ ψ
ψ

ψ

A2

A3

A4

A5

S1

S2

S3

ψ

ψ

ψ

A1
A5

O

N

4ψ
R

O

A AM1 2

R 

( ) 2/− ( ) 2/−

54433221 AAandAA,AA,AA 

represent electric fields at the observation 

point due to antenna elements #1, #2,  #3 

and #4 respectively 

51AA 

 −= 321 AAA

 −= 321 AAA

2
OAA 21

 −
=

=++ 211221 OAAOAAOAA

OAAOAAOAA 122121 −−= 

where
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


 =
−

−
−

−=
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OAA 21

=== 544332 OAAOAAOAA

2
OAA 12

 −
=

2
OAA 21

 −
=

OAAOAAOAA 122121 −−= 

(recalled)

R=1OA

(recalled)

.4

OAAOAAOAAOAAOAA 5443322151

 =+++=

+++=

2
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2
sinOAOMAsinOAMA 1111


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O
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O
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ψ ψ
ψ

ψ

A2

A3

A4

A5

S1

S2

S3

ψ

ψ

ψ

(recalled)

(recalled)
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2
sin2M2AAA 1210


RE ===

A1
A5

O

N

4ψ
R

2

4
sinONAsinOANA 111


R==

2

4
sin2N2AAA 151


RER ===

say AA 021 E=

2
sin2

0



E
R =

O

A AM1 2

R 

( ) 2/− ( ) 2/−

2
sinMA1


R= (recalled)

(recalled)

(recalled)

O

A1

ψ ψ
ψ

ψ

A2

A3

A4

A5

S1

S2

S3

ψ

ψ

ψ

(recalled)(resultant electric field typically due to 4 array elements)

2

4
sin

2
sin

0 



E
ER =

(electric field magnitude 

due to a single array 

element)
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2
sin

2
sin

AF


N

=

)(AF)( 0EER =

max

n
)AF(

AF
(AF) =

(rewritten)

Generalisation taking N elements 

(resultant electric field typically due to 4 array elements)

2

4
sin

2
sin

0 



E
ER =

2
sin

2
sin

0 



NE
ER = (array factor defined as)

(normalised array factor defined as)

2
sin

2
sin

1

)AF(

AF
(AF)

max

n 

N

N
==

N=max(AF) (maximum array factor)

Product of the array factor with 

the electric field amplitude due 

an individual array element 

gives the electric field 

amplitude due to the array of all 

the elements put together. 
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0

0 (AF)
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R

R

)(AF)( 0EER =

AF
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2
sin

2
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)AF(

AF
(AF)

max

n 

N

N
== (recalled) (recalled)

For smaller values of the successive phase 

difference ψ between the electric fields due 

to the elements, we may take sin(ψ/2)≈ ψ/2

2

2
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(AF)
)AF(
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n

max
max
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


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2

2
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(AF)
)AF(
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)(
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max
max
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0





N

N

E

E

E

E

R

R

===

(rewritten)

The field pattern thus follows the normalised array factor pattern which follows the well 

known sinx/x function (here Nψ/2 interpreted as x). 

The minima of the function takes place at Nψ/2 = , 2, 3, 4, 5, …… where the function 

becomes a null. 

The principal maximum of the function occurs at Nψ/2 = 0 which also corresponds to ψ = 0.

The first negative maximum occurs at Nψ/2 = 1.43 and the first positive maximum at Nψ/2 

= 2.46. 

1

|AFn|

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π 1π

0.25
0.20

ψ/2

Magnitude of 

normalised array 

factor versus ψ/2 plot 
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1

|AFn|

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π 1π

0.25
0.20

ψ/2

Magnitude of 

normalised array 

factor versus ψ/2 plot 

However, depending on the value of the number of elements, some of the 

minima of the normalised array factor predicted above at Nψ/2 = , 2, 3, 4, 

5, ……would be ‘missing’ being replaced by the principal maxima. 

For example, if we take the number of elements of the array as N = 5, then 

the Nth minimum, here, the fifth minimum predicted above as Nψ/2 = 5 or 

ψ/2 = 5/N = 5/5 =  will be missing only to be replaced by a principal 

maximum. 

We can appreciate this by noting that, at ψ/2 = , the value of  the normalised 

array factor takes on the maximum value of unity [(1)(N)/N = 1], which 

corresponds to the principal maximum that occurs at ψ/2 = 0. 
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2


 =

0=

Broadside array

Let us design the linear array to make it a broadside array such that we obtain a 

principal maximum in a direction normal to the line of the array, that is, at  = /2. 

 += cosd

(corresponding to principal maximum)

 cosd=

Broad-side array 

condition




 =+=+= )0)((
2

cos0 dd

Excitation phase difference  between successive 

elements has to be nil for a broad-side array. 

Phase difference between the electric 

fields due to successive array elements 

at a large distance from the broadside 

array 

(broad-side array)

 += cosd

(broad-side array)
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N/2 =




cos
2

d
N

=

null)(first   2/  =N cosd=

(broad-side array)

(rewritten)





cos

22
d

N
=

(first null of broadside array) 

(recalled)






2
=

Nd


 1cos−=

NdNd




 11 cos2)cos
2

(2FNBW −− −=−=

Nd


 =cos (first null) (broadside array) 

Since the nulls in the field pattern take place symmetrically on both sides of the principal 

maximum, we can find the first null bandwidth FNBW as the separation between the first 

nulls on both sides of the principal maxima as twice the angular separation between one of 

these first nulls and the principal maximum, the latter taking place at  = , as follows:

(broadside array) 

(expression for first null bandwidth FNBW of a broadside array)
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2

1
(AF)n =

39.1
2

)cos(

2
==

 dNN

We can find the half power bandwidth HPBW of the broadside array putting 

2

1

2

2
sin

=




N

N

Value so assigned makes the square of the normalised quantity 

equal to ½ corresponding to half power bandwidth HPBW

2

2
sin

(AF)n 



N

N

=

39.1
cos

=


dN

dN




39.1
cos 1−=

 cosd= (broad-side array)






2
=

(half-power angular location)

dNdN 






 39.1
cos2

39.1
cos

2
2HPBW 11 −− −=








−=

(broad-side array)

(broad-side array)

Using the same approach as followed to derive FNBW  of the 

broadside array 

(expression for half power bandwidth HPBW of a broadside array)
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End-fire array

Let us design the linear array to make it the so-called end-fire array such that we 

obtain a principal maximum corresponding to ψ = 0 along the line or axis of the 

array, that is, at either  = 0 or  = . 

 or 

 0



 =

0=

 += cosd

(corresponding to principal maximum)

End-fire array condition

 or  dd  −=

)1(coscos

or

)1(coscos

+=+=

−=−=





ddd

ddd

(end-fire array)
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)1(coscos −=−=  ddd

Corresponds to principal 

maximum at  = 0 at the axis of 

the array of the end-fire array

(recalled)

Nd


 +=1cos

null)(first   2/  =N

 2)1(cos)cos( =−=−= dNddNN

The solution is however inadmissible since cos cannot be greater than 1.

Therefore, let us go for an alternative solution leading to 

admissible cos less than 1.






2
=
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)1(coscos −=−=  ddd

Corresponds to principal 

maximum at  = 0 at the axis of 

the array of the end-fire array

(recalled)

Nd


 −=1cos

null)(first   2/ of instead  2/  =−= NN

 2)1(cos)cos( −=−=−= dNddNN

The solution is  now admissible since cos comes out to be less than 1.






2
=

(first null)









−== −

Nd


 1cos2)2(FNBW 1

(end-fire array)

(expression for first-null bandwidth FNBW of an end-fire array)

Since the first nulls would occur on both sides of the principal maximum at  = 0 of the 

end-fire array, the first null bandwidth FNBW of the end-fire array is obtained as twice 

the value of 
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We can next find HPBW of the end-fire array following the same procedure as used in for 

the broadside array. However, for a valid solution now, instead of Nψ/2 = 1.39, we have to 

take Nψ/2 = -1.39. that is, ψ = -2×1.39/N as follows:

)1(coscos −=−=  ddd

(corresponding to principal maximum at  = 0 at the 

axis of the array of the end-fire array)

(recalled)

39.12/ −=N

dN




39.1
1cos −=

)
39.1

1(cos 1

dN


 −= −

N
d

39.12
)1(cos


−=−

N

39.12
−=

(half-power angular location)

(end-fire array)

(half-power points being located on both sides of the 

principal maximum at  = 0 of the end-fire array) 
)

39.1
1(cos22HPBW 1

dN


 −== −

(end-fire array)



113

Yagi-Uda array

We have seen how the excitation phase difference between successive elements  needs 

to be different for the broadside (        ) and end-fire (             ) arrays that makes us obtain 

a principal maximum in a direction normal to and along the axis of the array respectively. 

Therefore, by controlling the progressive phase excitation  between the elements of the 

array, we can steer the beam of power of an antenna electronically rather than 

mechanically (the  latter by physically rotating the antenna). This is the principle of the 

phased-array scanning for electronic steering of the beam of antenna power (which can be 

implemented by controlling the value of  by adjusting the bias voltage of a hybrid-coupled 

varactor or the current of the coil wrapping a ferrite phase shifter). 

Phased array scanning for electronic steering of the antenna beam

0= d =

Reflector

Driven/active

0.25λ 0.31λ 0.31λ 0.31λ 0.31λ

 

Directors

0.51λ

0.49λ

0.43λ 0.43λ 0.43λ 0.43λ

Yagi-Uda also known as 

fish-bone antenna is a 

highly directive antenna

Transmits or 

receives a highly 

directive beam of 

power in the 

direction of the axis 

of the array (as in an 

end-fire array) of 

parallel dipole 

elements 

Yagi-Uda (fish-bone) 

antenna

Consists of a driven  

element (active), a 

reflector element 

(passive) and a 

number of director 

elements (passive) 

(thus all the 

elements not being 

active unlike in an 

end-fire array)



• The thickness of each array is significantly less than a wavelength.

• Only one of the elements is active or driven and the remaining elements are all non-excited, 

passive or parasitic (unlike in conventional arrays like the end-fire array). 

• One of the passive elements called the reflector is positioned along the array axis in the 

direction opposite to the direction in which the power is to be directed.

• The passive elements positioned along the array axis in in the direction in which  power is to 

be directed are called the directors.

• Power is received by the driven element in the receiving mode and delivered to the load.

• The length of the driven element is slightly less than a half wavelength.

• The reflector element is slightly longer than the driven element. 

• The director elements are shorter than the driven element. 

A typical simple example of a six-element Yagi-Uda array: See the accompanying figure (on 

the preceding slide) for the dimensions with respect to the lengths of the elements and the 

distance between the elements. 

The reported directivity of the this Yagi-Uda array is 7.54 (that is 8.77 dB) as compared to that 

of a half-wave dipole 1.64 (that is 2.15 dB).  

Some basic features
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Summarising Notes

 Expressions for energy and energy density in electrostatic field has been 

derived in terms of the electric field and electric displacement (or electric flux 

density).

 Expressions for energy and energy density in magnetostatic field 

analogous to the corresponding expression for energy density in 

electrostatic field has been appreciated.

 Expression for energy stored in a capacitor in terms of the capacitance of 

the capacitor and the charge of the capacitor or, alternatively, voltage across 

it has been obtained using the expression for energy density in electric field.

 With reference to a parallel-plate capacitor, the expression for energy 

density stored in electric field in terms of the electric field and electric 

displacement or electric flux density has been found to be valid. 

 With reference to a solenoid, the expression for energy density stored in 

magnetic field in terms of the magnetic field and magnetic flux density has 

been found to be valid. 

 Poynting vector (power density vector) has been introduced. 

 Poynting theorem has been derived involving instantaneous Poynting 

vector.
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 Poynting theorem encapsulates the phenomenon of the storage, loss and 

flow of electromagnetic energy. 

 Poynting theorem has been used to appreciate Joule’s circuit law for the 

power loss in a wire of circular cross section and of finite resistance carrying a 

direct current. 

 Poynting theorem has been used to derive the expression for energy density 

in electric field with reference to the problem of a parallel-plate capacitor of 

circular cross section.  

 Poynting theorem has been applied  to the problem of an inductor in the form 

of a solenoid of circular cross section and hence an expression for energy 

density in magnetic field has been derived.

 Complex Poynting theorem gives the concept of time averaged 

electromagnetic power flow.

 Complex form of the Poynting theorem has been derived that can be used to 

study time-averaged power flow through a bounded or an unbounded medium 

and associated power loss due to the presence of a lossy conducting medium.
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 Complex Poynting vector has been identified as half the cross product of the 

electric field vector and the complex conjugate of magnetic field vector.

 Time averaged complex Poynting vector has been identified as the real part 

of the complex Poynting vector.

 Average power going out of a volume enclosure can be found as the outward 

flux of the time averaged complex Poynting vector through the enclosure.

 Concept of reactive power flowing into a volume enclosure and its relevance 

to average energies stored in electric and magnetic fields in the volume has 

been developed.

 Concepts of power flow developed finds extensive applications, for instance, 

in hollow-pipe waveguides (used for the transmission of power in the 

microwave frequency range) and antennas.   

 Expression for the power loss per unit area in a conductor in terms of the 

surface resistance and surface current density of the conductor has been 

deduced ⎯ an expression that has applications for instance in estimating the 

attenuation of power in a hollow-pipe waveguide.

 Concepts of power flow have been exemplified in their application to 

conduction current antennas.
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 With the help of the fundamentals of Hertzian infinitesimal dipole, the antenna 

concepts have been developed such as  

 directive gain 

 power gain

 radiation resistance

 effective aperture area and  

 Friis transmission equation.

 Study on antennas has characterized not only the infinitesimal dipole but also 

practical antennas such as 

 finite-length dipole 

 broad-side antenna array

 end-fire antenna array and 

 Yagi-Uda antenna.

Readers are encouraged to go through Chapter 8 

of the book for more topics and more worked-out 

examples and review questions. 



119119


