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Development of basic concepts of electromagnetic power flow that can be
subsequently used to study power flow through unbounded or bounded medium

T Tapics dealf with >

Energy and energy density stored in electrostatic and magnetostatic fields

Poynting vector (power density vector)
Poynting theorem (energy balance theorem)

Appreciation of energy density stored in electric field, energy density stored in
magnetic field and power loss in a conductor (Joule’s law) from the applications of
Poynting theorem to the problems of a parallel-plate capacitor of circular cross
section, an inductor in the form of a solenoid of circular cross section, a resistive
wire of circular cross section carrying a direct current, respectively.

Power loss per unit area in a conductor in terms of the surface resistance and
surface current density of the conductor

Complex Poynting vector theorem giving the concept of time-averaged
electromagnetic power flow and the associated power loss due to the presence of a
lossy conducting medium



Average power going out of a volume enclosure as the outward flux of time averaged
complex Poynting vector through the enclosure

Reactive power flowing into a volume enclosure and its relevance to average energies
stored in electric and magnetic fields in the volume

Exemplification of the concepts of power flow in conduction current antennas
Hertzian infinitesimal dipole antenna

Antenna directive gain, power gain, radiation resistance, effective length, effective aperture
area and Friis transmission equation

Finite-length dipole

Antenna array

 Badgiomnd

Basic concepts of static electric field, static magnetic field and those of
time-varying fields developed in Chapters 3, 4 and 5 respectively as well
as basic cocepts of circuit theory




5n«0&?y, and m&tgy, My, Hored in
beblsoAitics amd mognloitic fiolds

Let us find the work done in distributing n number of point charges Q,, Q,, Q,, .....Q, in fee-space one
by one in order by finding the work done in placing each of these point charges at their respective
positions.

Work done in placing the first point charge Q, at its position = 0 (since there is no electrostatic field in
the region against which the charge has to be moved for placing it at its position)

Work done in placing the second point charge Q, at its position = Q,V,,
Work done in placing the charge Q; at its position = Q;V;, + Q;V;,
Work done in placing the third point charge Q, at its position = Q,V,, + Q,V,, + Q,V,;, and so on

V,, is the potential at the location of Q, due to the point charge Q,, and so on

V. O ) eeeees . . _ _
21 47 o1, «—— I, =distance of the location of Q, from the location of Q,
V,.= —Q5 . _ _
43 4%.0],43 ’ - r,; = distance of the location of Q, from the location of Q;,
and so no
and soon



V, = @ (recalled)
47 o1y,

V., is the potential at the
location of Q, due to the
point charge Q,

Similarly,
Q
Vl2 — 4—1
TE&E )

V,, is the potential at the
location of Q, due to the
point charge Q,

P Q2V21 = Qz(

Ql ) — Qle

r,, = distance of the location of
Ay, b n, 21 = ! | %

from the location of Q,

-
é_
OV, =0 ( 0, )= 00, r,, = distance of the location of Q,
= g, AmE,rn, from the location of Q,

<« Right hand sides of the above two
expressions are equal since r,, = ry,

Qszl - Q1V12

Similarly, We are going to use these identity
/ expressions in the analysis to follow
o5 =00,

and soon



Work done W in distributing n number of point charges Q,, Q,, Q,, .....Q,;

n-

We=0+0,, + Q3V31 + Q3V32 + OV, +0V, + Q4V43 ...

+QV +OV , +OV . . +...+0V

n,n—1

l <—  Alternatively

WE =0+ Q1V12 + Q1V13 + Q2V23 + Q1V14 + Q2V24 + Q3V34 T

+ Qll/ln + Q21/2n + Q3I/3n t.ot Qn—lV;—l,n .

Adding the two alternative expressions for W and rearranging terms

Wy =0V, +Vs +Vy+ H O,V + Vs +V.00)
+O,(Vy +Vy vV +...0)
+ O,V AV + Vs + o )+
+ 0,V V4V V)

OV =0V, |
O3 =0V,
OV, =00,
OV, =0V,
Oy =0
OV, =05,
OV, =0V,
OV = OV,
OV, =0,

QnI/n,n—l — Qn—ll/n—l,n)




W, =0V, +V +V+n WO, (Vy Vs +V,,..)

+-£23(L31'+-L32 +'pg4 +..... )
+Q,(Vy Vi + V4. e,
+Qn(an +Vn2 +Vn3 +""I/n’n_1)

l

W, =0V, +OV, +OV,+OV, +....+ OV

|

p=n p=n
2Wy = ZQpr = W= 5 ZQpr
p=1 p=1

WE=%ijdr <—l

<= V.D=p

(rewritten)

W, =%ijdT :%IVV.EdT

Vi=V,+V+V, +.....
I/2:Vzl—i_l/zg,_*_l/zél‘k




1 1 ~
Wi = 5! Vpdz = 5! V'V.Ddz Vi(VD) =VV.D+VV.D (vectoridentity)

| \ N
V.D=V.(VD)-VV.D

1 - .
W, == j (V.(VD) —XV.D)dr

| E =-VV (recalled)
= [(v.D)+E.D)dr

_ L j (V.(VD)dr + j E.Ddr]

2
i We consider a large volume enclosure at a large distance r from
— pa = = the charges.
=—[ j (VD).dS + j E.Ddr] 9
2% g s Vo 1/r,Doc1/r2 and dS « r2 so that the integrand of the first
l term becomes o« 1/ r
l¢= = The integrand of the first term may be ignored
W, =24 EDdz I 1
¢ Electrostatic energy density U g =T E 13
(electrostatic energy stored from the work done) 2

Analogously,

le = =
4 Magnetostatic energy density U, =

1
(magnetostatic energy stored from the work done) 2

HB g



With particular reference to a simple example of a parallel-plate capacitor, appreciate the
expression for electrostatic energy already derived as

U,=LED
2

Let us find from first principles the work done in charging a parallel-plate capacitor by a source of
potential. We consider the plate dimensions to be large compared to the distance between the plates
of the capacitor.

0, =CV, <— Charge Q, of the fully charged parallel-plate capacitor of capacitance
0 0 C with a potential difference V, between its plates

Q =CV <— Charge Q of a capacitor of capacitance C charged to a potential
difference V between the plates of the capacitor

! !

0<0<Q, 0<V <V,

AW paciior = VAQ < Element of work dWepucior done in adding an extra element
of charge dQ to the capacitor when it is already raised to
\l/ potential V and has a charge Q
aw. _ Q dO — Integrating dWc,p,citor » W€ can find the work done in charging the
Capacitor : :
C capacitor to a given amount



d VVCapacimr = %dQ (recalled)

<— Integrating

N
o)
o]
oo
e
S
-
|
—_—
N
N
o
o]
1)
1
8
=
|
—y

0=0, 2 0=0, 2
OQ 110 _ l Qo (work done to charge the capacitor
C 2 C to its full amount Q,)

0=0

1Cv? 1
112 — — O __ (V. 2 (work done to charge the capacitor
Capacitor 0 .
2C 2 C 2 to its full amount V)

< V Ed «— E = V /d (electric field magnitude E, supposedly uniform in a direction
perpendicular to plates of the capacitor, with dimensions large

1 compared to the distance d between the plates)

W :EC(Ed)Z

Capacitor

10



W = l C(Ed)2 (work done in charging the capacitor stored in the form of
Capacitor electrostatic energy of the capacitor)
<— Dividing by the volume Ad of the capacitor
C(Ed)? | | | - |
U — 7 (electrostatic energy density stored in the electrostatic field of the capacitor)

Capacitor — 74 d

< (= % (capacitance of a parallel-plate capacitor)

1 1

——gE*= —E 13 (electrostatic energy density stored in the electrostatic field of the capacitor)

U

Capacitor

Interestingly, the above expression with reference to a capacitor agrees with the
expression for electrostatic energy density deduced earlier from first principles.

Let us next experience a similar example of agreement with reference to an inductor with
respect to magnetostatic energy density. For this purpose we can take the particular problem
of finding the energy density stored in the magnetic field of a solenoid.

11



Let us then take the particular problem of finding the energy density stored in the
magnetic field of a solenoid.

For this purpose, let us find the work done in establishing a current / in a long solenoid of
inductance L by an induced electromotive force.

Element of work done dWs,,..iq PY the induced electromotive force

in bringing about an increment of current di in the solenoid in an

infinitesimal time dt thereby adding an element of charge dq is

dWSolenoid — ‘ Einduced dq
«— ‘Einduced = dps = dps (magnitude of emf induced in the solenoid
dt dt interpreted as positive for a charge building

up with time )
— dg=idt

v

AW, oo :‘ E. ccddq = dpy idt «— ¢, = Li (magnetic flux linked with the solenoid)
di 7.
AW ionoia =L 7 idt = Lidi
{

12



di

AW, . =L idt=Lidi
dt
Integrating from the limiti=0to j =

i=I, i2 i=ly 1

Weitenoid = IdVVSdenMd = jLidi =[|— = —ng (work done in building up current in the
2 21, 2 solenoid from i = 0 to i = )

| )
VVSOlenoid = ELIO -

N

(energy stored from the work done in the solenoid when the currentis i = I, in the solenoid)

— | = ,uon2al (inductance of the solenoid of length / and cross-sectional area «, n being the
number of turns per unit length )

(recalled from Chapter 4)

Wy _%/Jonzal]g :%:uo(nlo)z(al)

v

olenoid

(energy stored in the solenoid when the value of the current is i = [, in the solenoid)

<— Dividing by the volume al of the solenoid of length / and cross-sectional area «

1
USolenoid - 5 :uo (nIO )2

(energy density stored in the solenoid)



1
USolenoid - 5 :uo (nIO )2

(energy density stored in the solenoid)

l +<—— H =nl, (recalled from Chapter 4)

1
Us =~ uH’

olenoid ~—

(magnetostatic energy density stored in the magnetostatic field of the inductor)

Interestingly, the above expression with reference to an inductor agrees with the
expression for magnetostatic energy density deduced earlier analogously from the
expression for electrostatic energy density deduced earlier from first principles .

Obtain the following expression for the inductance per unit length of a coaxial cable
starting from the expression for energy density stored in a magnetic field, where a is the
radius of the inner conductor b is the inner radius of the outer conductor of the cable:

L= b (per unit length).
2r  a

In order to find the required expression let us start with

U, = — H.B (magnetostatic energy density) (recalled)

1
2

14



UB = Ijlé (magnetostatic energy density) (recalled)

1
2

. E:,uoﬁ

Ug=— ,LIOI{2 (magnetostatic energy density)

Multiply by the element of volume 2zrdrl of the cylindrical shell
of length / and infinitesimal thickness dr of radius r lying
between the radius a of the inner conductor and the inner
radius b of the outer conductor of the coaxial cable

v

1
AW, = 5 ,LlOHZ(27Z' rdrdl) (element of magnetic energy stored in the volume element)

1
— H= (recalled from Chapter 4)
2y

1 1
AW, =—p, (2—)2 (27 r dr dl) (element of magnetic energy stored in the volume element)

2

15



1 1
AWy =— 4 (

2 2wr

)2 (27 r dr dl) (element of magnetic energy stored in the volume element)

<«— Integrating between the limits r = a (inner conductor) and b (outer conductor)
and /=0and/

r=b
-
WB—[IEﬂo(zﬂ_r

l

W, = /1012 rj d’”] _[ l]= /2)71;2 [ln”]i [l]é — /uolz lnél (energy stored over the length / of the

coaxial cable)

)

T
W, = lL'12 (alternative expression for the energy stored over the length
_ B n | of the coaxial cable from the work done in building the
Comparing current / in the cable of inductance L’) (derived earlier)
the right
hand sides
l Dividing by /
2 b
lL']z Mlnél —»L’:ﬂln_l l_, L:ﬂ]né
2 Ar  a 27 a 2T a
(inductance of length / of (inductance per unit length
the cable) of the cable)

16



Po?,nfu‘g veAor and
?oy,nf 141? Theorem

The phenomenon of the storage, loss and flow of electromagnetic energy follows the basic energy
balance principle well stated by the Poynting theorem. We can formulate the theorem in terms of a
vector quantity called Poynting vector defined as:

named after the British physicist

. D r 7 . . — 2
Poynting vector P = £ x H [having unit of (V/m)x(A/m) = W/m2]<— John Henry Poynting.

lpr= = . .
W, = 5 § E.Ddrt (energystoredin electrostaic field)(recalled)
\ D =¢E \ Electrostatic
energy density

:ligEzdr |-
27 U, = 5E.D (recalled)

1= = . o
W, = §§ H.Bdz (energystoredin magnetostaic field) (recalled) — njaonetogtatic

’ _ ~ energy densit
\B _ ILLH \ gyl y

1 U. =— H.B (recalled)
= E§ILLH2dT ’ 2

17



Vector identity —— V.(Ex[j]):[j[,(VxE)—E.(Vx[jI)

VxE = —8—3 I
ot
(Maxwell’s equation)
Vx H =oE + 6—D
ot

(Maxwell’s equation)
D=¢E

B=uH —

= - 5 1 2
(ExH)=——(—¢&FE" +
( ) az(z

<

1

E,U

2 2 =

:ﬁ.(—a—B)—E.(aE+a—D)
ot ot

~ oH
- g%
5

oH
Y > kg
H5

__9

—

E2—5E.8—E
ot

Ez—gEa—E
ot

1 o 1
= —uH?)—ok? ——(= &k’
(ZuHT) az(z )

ot 2
_9

(rewritten)

<— |ntegrating over the volume ¢

IV.(Exﬁ)dT:J—g(%gEz +

v

f(Exﬁ).aE:—g!(%gE%

1

5#

2 2
EyH )dr—!aE dr

—— [VA(ExH)dr ={(ExH)-dS «~—
T S

Hz)dT—J-GEsz

1

(%gE2+§,uH2)—GE2

jv-ﬁdr=§13-d§

T

Vector divergence theorem
as applied to the vector:

P=ExH



I\ AC — 4P JCQ — 0 1 1 2 2
f(ExH).dS _iP.dS _—al(igE o uH )dr—!aE dr

Poynti

<+<—— With a change in sign T~ thc;)g:-:,:,g
involving

- - - T | 1 / instantaneous
—§(E><H).dS = —§P.dS :8_I(5 ek’ +§,uH2)dT+ IGEsz Poynting vector:
! s Ly : P FEx i

T

The right hand side represents the time rate of change of energy (electrostatic plus
magnetostatic), that is, power in the volume plus the time rate of energy, that is, power
v lostin the volume.

_if(E X ﬁ)d§ — _§ P.JS Represents the power going into the volume, one part of which stands
g for the time rate of increase in the energy stored in the volume, and
the other part stands for the power loss (ohmic loss)

Therefore, with a change in sign

|

§(ExH)dS =§P.dS

represents the power transmitted out of the volume.

(flux of Poynting vector E % [:] going out of the volume).

19



Let us now appreciate Joule’s law for power loss in a straight wire carrying a
direct current

Power entering a volume enclosure is given by

i — o 5 1 2 1 2 2
_i(ExH).dS—a‘!(EgE +§,uH )dT+!GE drt (recalled)

(Poynting theorem involving instantaneous Poynting vector)

<+«— direct current: 0/ot =0

o TJ Qo _ 2
_§(EX H)'dS B _[GE dr —  There being no electric field existing outside the

wire, the volume over which the integration of
the right-hand side has to be taken is restricted

< to the region occupied by the wire.
T=al
Il 3 2 T 2 _ 2
_ff(E x H).dS = ol JdT =OL"T E = K in terms of the potential difference
§ ¢ [V between the ends of the length /
V., V2 V2 ) of the straight wire
o( l ) (al) 17 R
o a T~ V= [R(Ohm's law)
1/
R=——

oo 20



— if (ExH)dS = I°R (rewritten) (left hand side representing the

\ power going into the wire that gets
(Joule’s law) Ohmic loss lost in the form of the so-called
Ohmic loss)

z

~o
3
X
]
éﬁn
aof)
i f

Y N )
lde | DN E

Wire
surface

A straight wire of length / and radius a

carrying a direct current showing the __,  Cross-sectional view of
electric and magnetic field vectors and the wire

the Poynting vector that is directed

inward to the wire, all on the surface of

the wire

If the direction of the direct current is made to reverse, which
amounts to reversing the direction of the electric field as well, then
the direction of the magnetic field also reverses, which
consequently does not cause a change in the direction of the

Poynting vector P = E x H. 21



Let us have a re-look at the problem of power loss in a wire carrying a direct
current starting from the power density or Poynting vector at the surface of the
wire of circular cross section.

] —
Ay

T

Poynting vector H =
S oD — 2w a

P=ExH -

(azimuthal magnetic field at the
surface of the wire of radius a due to a

E
direct current / along z obtainable with

O Cross-sectional view of
I the help of Ampere’s circuital law) the wire

P=(Ed )x a = _
(Ea,) (27ra o) _ E=Fa

Electric field directed along z due to a potential
difference across the wire that sends the current
through the wire also in the z direction

PoExH=E——G xi,——E—L
2ra 27w a

a. (directed radially inward)

(in view of therelation a_ xa, =—a,)

22



P=ExH=E a xa,=—FE a, (rewritten)
27ra/' 2rwa
E :% — I=cEm’— I=J m’«— J =ocE(Ohm'slaw)
(6)(72-61 ) (conduction current density)
PofxH=-FE ' g=— 21 1 g
l 21 a (o) m’) 2ra

— § (E X ﬁ)d§ = Power going into the wire over a length / through the area 2 zal of its surface
y l dS =dSa,

|

f@Exmas=f- L L aas-§ L T 4aq
' " (o)(m”) 2ra ' (o) (m”) 27a
fds =2mal e Ll _1 1
s l — ca om’
2 2
—§(EXﬁ)d§: ! 3 ! §dS: ! > ! (27fa[):]2R
. (o) (ma™) 2rra (o) (m®) 27 a

(power going into the wire which is the ohmic loss, agreeing to what was obtained earlier
as Joule’s law)



In an interesting illustration, let us apply Poynting theorem to the problem of a parallel-
plate capacitor with circular plates of large dimensions compared to the distance

between the plates to find the expression for energy density stored in electric field of
the capacitor.

\

i d  Outside

( | o \ i region

interface

T

& @

Circular

Inside plate

region
A parallel-plate capacitor with circular plates I
of radius a showing the electric and
magnetic field vectors and the Poynting -
vector that is directed inward to the wire, all
at the interface between the inside and
outside regions of the capacitor

Cross-sectional view of
the capacitor

Poynting vector

—

0 F—Ea
= z i dEa —
P=ExH H =&——a, (deducedin Chapter5
l “// dt 2 using Maxwell’s equation)
- . E a _ Ea_. _ E a _
P=ExH=FEa, xgd——ag :5Ed—ﬁaz Xa, :—gEd—ﬁar
dt 2 dt 2 dt 2

24



- = = dE a _.
P=ExH= —gE—ﬁar (rewritten)
dt 2

Power going into the capacitor as indicated by the radially inward direction of the
Poynting vector given by the above expression will cause a storage of energy in the
capacitor with time. Consequently, only the first term will be significant in the
following expression stating the Poynting theorem:

- - = 01 1
—§(E xH)dS = EJ‘(E eE* + 5 uH)dr +IGE2dT (Poynting theorem) (recalled)

14— Only the first term bring significant

—i(Exf[).dg = —2‘13.41@ = %Bgﬁdr

- _fl—)*.d—' _ OWE
) ot
Y Integrating with respect to t | |
1 - _ 2 _ 2
8WE:g _gEZdT > WE—IEEEdT_’ UE—EE
or  otd2 :

(energy density stored in electric field)

25



@4« wn Tm@

ExH E = E, coswt a, (time-varying field) ~ ~
da
H = H,cos(wt +0)a,, (time-varying field) |
ExH=EH,cosaxcos(ax+0)a. xa, T (unit vectors in the directions of electric

l 0 = phase difference between electric and magnetic fields and magnetic fields respectively)
ExH = E,H, cosat(coswt cosd —sin wt sin 0)d, x d,,
=FE,H (c oS’ wt cosO —coswt sin @t sin 0)a, x a,, (time-varying fields)

Time-averaged
Poynting vector P =

average

2r
IEOHO(cosz ot cosd —coswt sin 0)d (wt)
0

2r aE X aH
j d(ot)
0
2 2r
cosé I cos’” wtd(wt)—sin @ I coswtd(wt)
=FEH, 0 0

Td(a)t)

cosH(127z)
=E,H, 27? d,Xd, ZEEOHOCOSQ a,xd, 26




—_

Time-averaged Poynting vector P, .. = 5 E,H,cos0 a,xa, (rewritten)

E=E,exp jotdy E=E. coswtd
0 E

7 _ ; ~  <«— |nphasor notation <«— _
]{ Hoexp jler+6)a, H = H,cos(t+8)ad,
H" = H, exp— j(ot+0)d,
(magnetic field typically leading
l electric field by a phase angle 6).

ExH" = E,H,[exp(jort)][exp j(wt+0))]d, xa,,
=E,H,exp(—jO)a, xay,
=E,H ,(cosf— jsmB)a, xa,

ReExH" =E,H,cos0ad, xd,

|

1 = > % 1 — —
— EReExH = EEOHO cosfa, xa,
g 1 = %
Time-averaged Poynting vector P oo 5 ReExH

27



—

1 — >k
Time-averaged Poynting vector P = 5 Re Ex H (for time-varying fields)

average

«— §(E X ﬁ)d§ (representing power transmitted out of a volume enclosure (as
S obtained earlier interpreting Poynting theorem involving
instantaneous Poynting vector)

v

Obviously, with reference to time-varying fields,

1 = sk e = puet
§ ~Re(ExH')dS = §PrereeedS
S S
represents the time-averaged power transmitted out of a
volume as the interpretation of Poynting theorem for time-
varying fields.

The concept of time-averaged power transmitted out of a volume developed here finds
practical applications, for instance, in the study of power loss in a conductor and radiated
power from an antenna, to be taken up later here as well as in the study of transmission of
power through a waveguide in the chapter to follow (in Chapter 9).

28



ReP

ReP

— ] _ _
Time-averaged Poynting vector P = EEOHO cosf a.xa, (recalled)

average

%Reﬁxﬁ* = %EOHO cosfa, xa, (recalled)

1

Time-averaged Poynting vector P&lverage 5 ReExH’ (recalled)

We define complex Poynting vector P as follows:

complex
. 1 -

o = — E % H* (Definition of complex Poynting vector)
complex 2

(Complex Poynting vector) (defined as)

v

L B P

complex = Re( EX H ) - 5 ceExH = average
P (rewritten)

complex average

29



Power density triangle

We can depict the power density vectors in a vector triangle on a A Imaginary axis

complex plane obeying the following relation
C
AC=AB+BC >
Hypotenuse of the triangle represents the complex power
density vector, also referred to as the virtual power density
vector, the magnitude of which represents the apparent power .
density ~ A—C' A B Real axis
S , ,
- 1 1 Power density triangle

omplex = EEXH* = EEOHO(COSQ—jSin O)a, xa,,
(magnetic field typically leading
Side of the triangle on the real axis represents the average  €lectric field by a phase angle 6).
power density vector or the real power density vector
AB -,
- ] _ _
P _EEOHO cosO a,xa,

average

Side of the triangle on the imaginary axis represents the reactive
power density vector .
BC | |
Preactive - ImPcomplex = 5 ImE X H* - _E EOHO Sin HaE X c_iH

30



In an illustrative example let us obtain an expression for time-averaged power lost in a
current-carrying straight wire in terms of the peak current and wire resistance.

We have already obtained earlier the expression for power going into the wire that gets
lost in the form of the so-called Ohmic loss:

L L /]zlosmwt
_§(E xH).dS = —j: P.dS =I’R (recalled) R being the wire resistance

‘ and /, the peak current

Instantaneous power P going into the wire and getting lost

|
P:—§13-a’3’zlozsin2 ot R
S

Taking the average over a complete cycle

|

2w 2w
[1,’sin® ot Rd(wt) 1R [sin® wtd(wt)

_ 2 .2 _ ot=0 _ wot=0
IDawerage - <IO sn” wt R>average _ 27 o wt=27
j d(wt) j d(wt)
wt=0 wt=0

31



2
I,’R [sin® wtd(wt)
IDaverage = a)t:)tozz,[ (rewritten)

j d(wt)

wt=0

2r
IOZRI 1—cos2a)td(a)t)

wt=0

Td(m)

wt=0

2 2
102]{; I d(a)t)—; Icos2cotd(cot)J

wt=0 wt=0

zj” d(w?)

wt=0

[ . 27
]OzR l[a)t 3,,_1 sin 2wt
2 2l 20 |,

[1])”

1R L 2r—0)— 1 (sindz—sin0)
2 4w

27 -0

32



’R 1(2z—0)—1(sm4n—sin0)
2 4
27 —0
1
I°Rl ~27——(0-0
0 [2 4 4(0( )} 1

= =—1I,’R
27 -0 2

P =

average

(rewritten)

(average power P, g4 lOst in the wire in the form of Ohmic loss)

Similarly, in another illustrative example let us find the average power going into a
parallel-plate capacitor with circular plates.

E=Fa,
Electric and magnetic fields at the cylindrical
. dE q . (recalled) > interface between the inside and outside
H=¢ Za ae regions of the parallel-plate capacitor
N = . . , R ok, = H,say
E=Esmwta =E,smwta, /
dE a

/H 5——ae—ga)E cosa)t2 =H,coswta,=H, coswta,

P=ExH =(E,sinwt H,coswt)(a, xa, ) (Poynting vector) (instantaneous)



P=ExH = (E,sinwt H,coswt)(a, xa,) (Poynting vector) (instantaneous)

Averaging over a cycle

|

P erage = <E X H>avmge = <EOHO SN wtCcoswt a, x aH>average
27
onHo sinwtcoswtd(wt)a, xay,
= =0 = «—— d(smat)=coswtd(wt)
[ d(@0) f
wt=0

E,H, j(smwt)d(smwt)agxaﬁ E,H, (0 0)d, xd,

— wot=0 — :O

2%—0
j d(wt)
l wt=0
§ veragedS = 0 . —§B.dS =—f(Ex ) dS
S N
Average power going into the capacitor found to be nil Power going into the capacitor

Power alternately goes in and out of the capacitor since the direction of the Poynting vector
becomes radially inward and outward at the cylindrical interface between the inside and
outside regions of the capacitor at consecutive quarter cycles, which makes the average
power going into the capacitor nil. This is as also found analytically above.
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Power lo»mmm‘fm
tn a condudor

Consider a uniform plane wave propagating along z which is incident on the surface of a
conducting medium (1) of conductivity o from a free-space medium (2).

o >> jwe (good conductor) ) Free-space
\ medium
; : oo
E, k| jou, _|jou S -
= — =nN=_ |——"—"—=,——— —/ Interface Y,
H, H_ o+ jwe, o R S e AP S I I
SI8TeTeTeTe’y, Gt s
i*ﬁ*i*iii

L

(relation between electric and magnetic field e
components of a conducting medium in terms

of its intrinsic impedance 7; see Chapter 6)

oielaty
ottt tatatete
pata et

s

b R

. AT

A

n= L = [T [ =R+ X, =2, ’
o 20 20

E :

| . SEN=RAJX =2
(separating the real and imaginary parts by the H
method explained in Chapter 6) Y

(intrinsic impedance r being equal to surface impedance Z, comprising
surface resistance and surface reactance of the conducting medium)



(2) Free-space
medium

a, ><[j[2 = js (surface current density)

(electromagnetic boundary condition at the
interface between the conducting medium (1)
and the free-space medium (2) recalled from
Chapter 7)

& e DU
«—— d. =—a_ (unit normal vector being directed STttt **I*:*I*II**I;E
n z AR AN 8 BN AN

from medium 1 to 2 in the
negative z direction)

— —a.xH.a, =J, > J,=—a_xH a,=H a_(surface current density)

z y yy y
. . e _ n=2 =R + jX_(recalled)
Time-averaged Poynting vector Hy l
g 1 - Tk 1 — * 1 * — 1 *
P erage = EReEx H = ERe(Exax) x(H,a,)= ERG E.H (a,xa,)= ERG E.H a.
1 ey 1 e 1 , "
= Re(pH H)) =~ R(ZH H,) =~ Re(R, + jX,)H H,
1

= — RSHy[—[; (average power density propagating through the conductor along z)

|
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1

Paverage = 5 RSHyH; (power loss per unit area in the conductor) (rewritten)

—

J,=—a.xHa,=H a, (recalled)

l

J,-J =HH,

v

1

Power loss per unit area in the conductor = _RSHyHy = _Rst -JS

2

The expression finds extensive application in finding resistive or Ohmic loss in
electromagnetic structures such as waveguides (in estimating attenuation constant)

and resonators (in estimating quality factor) (taken up in Chapters 9 and 10
respectively to follow).
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In a simple illustrative example let us calculate the incident power density and the
power absorbed per unit area in a sheet of brass of conductivity o= 1.5x10” mho/m on
which a uniform plane wave is incident with a peak electric field of 1 V/cm at 10 GHz.

E, .— M= 120 7 =377 ohm

n (Free-space intrinsic impedance)
0

(peak incident magnetic field)

l

E,=1V/m =100 V/m (given) — H =

(peak incident electric field)

100 Given
H =—A/m
07377 d
/ o =1.5x10" mho/m
v /=10GHz =10x10" =10" Hz
2
! E = l (100) =13.26 W/m”*

Incident power density — <

D Ty 377

1 |
Power absorbed per unit area =§RS([-I;V0)2 «— R, = 7Sty «
o)
ty=47x10" Wm |

10 =7
1 ”f“O(Ho)zth”XlO <4710 ) 199y 8107 Wi =1.8 mWin
2 o g

2 1.5x10’ 377
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Corpln P et thors

Let us recall Poynting theorem involving instantaneous Poynting vector:

1

- (ExH)dS—— PdS =— (15E2+—yH2)dr+ oF’dr
T 2 2 T

l L E-E=E
J. =oF
—§(E><H)d§:_§13d*:ﬁjl(gﬁ E+uH H)dr+j177 J dr
S ) ot 2 )
| D= ¢
B=uH

~f(Ex 1S ={PdS == [ (E.D+ B. e+ [ E-J de

(Poynting theorem involving instantaneous Poynting vector
expressed in different forms)
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Poynting theorem involving complex Poynting vector

Starting from

VA(ExH)=H.(V<xE)—E.(VxH) ExH" =

1
2
(vector identity)

we have already deduced

|

~f(Exti)aS =—{Pas =§ !%(E.D+l§.ﬁ)df+ [ -7

complex

Poynting theorem involving instantaneous Poynting vector:
ExH=P
Similarly, starting from

V(ExH")=H NVxE—E-VxH" (vector identity)

let us now proceed to deduce Poynting theorem involving complex Poynting vector:

— — 4 —
ExH = complex

1
2
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V.(EXFI*)ZFI*.VXE—E-VXFI* _
\
vector identity) T~ ot (Maxwell's equation)

l (

V(ExH")=-H", a—B—E (Jc*w

Ot

"\ -

. LoD
B =t © ot

@\Qﬂ
—
<
X
T
I
)
 +
S))
SIS

. OH OE" — ¢ ot

|

V(EXH )——,uH ———¢E- —=—FE-J,

Ot Ot

E = E,exp(jot)a,

E’ =E,exp(—jwt)a,

OF" , -
?:_JwEoeXp(_Jmt)aE
ﬁzHO exp j(wt £ 0)ay,
H =H,exp— j(wt+6)ad,
OH _
gzja)Ho exp j(wt+6O)a,

A

IV.(EXFI*

y

)dr =—jo[(uH H-cE-Edr—|E-J, dr

=—ja)E*

=ja)ﬁ
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IV.(EXﬁ*)dT = —jwj-(yﬁ*.ﬁ—gﬁ'-ﬁ*)dr—IE-jc*dr (rewritten)

\ jv-(Exﬁ*)dr=§(E><Tﬁ*)-d§

Vector divergence theorem
as applied to the vector:

ExH"

v

§(Exfl*)-d§=—jwj(yfl*-F[—gl:f-E*)dr—_[E-jc*dr

S

< Dividing by 2
1 _ T S, 1= =
3(5( ‘H icomplex =—]a)!5(,uH -H—gE-E)dr—!EE dr
With a change in sign
l
1 - ol 1= =
_iE(E = § omplex dSzja)_IE(,uH -H—gE-E)deE-JC dt

(Poynting theorem involving complex Poynting vector)

42



Thus, starting from

V(ExH)=H.(VxE)—E.(VxH)

(vector identity)

we have deduced

|

~§(Ex H)dS =—{P.dS = —f( 6 4+

2
2,uH )dT-I—J‘GE dr

Poynting theorem involving instantaneous Poynting vector:

ExH =

Similarly, starting from
V.(ExH") :Ijl*.VxE—E-VijI*—\

(vector identity)
we have also deduced

|

_%(Exﬁ*),dg:_{*wmm dS = Ja)j (uH'-H - gEE)de

S S

1 = -
Poynting theorem involving complex Poynting vector: EE xH"

P

43



S S

<— Real part

—§%Re(l§xf[*)-d§

S

AP dS = joo] (A A -

—_

8E-E*)dT+I

N | —
o

(Complex vector theorem)

<+<— [maginary part

—§ Im(ExH")-dS

—§ Re complex ” = _§ Im complex -
1 1 > % — = =k
J‘_ :wj—(yH -H—¢E-E)dr
' 2 /o z
average - Re complex Preactlve = ImPcomplex
D 1 o — L
:EReExH =—ImExH

§ average

1 = ==«
= j —FE-J drt
S T 2
(real part of the expression stating
the Complex vector theorem and

the balance of real power)

P dS =] ST =2 E-Edz

S

(imaginary part of the expression stating
the Complex vector theorem and the
balance of reactive power)
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~§ P S = I J. dr

(real part of the expressmn stating
Complex vector theorem and the
balance of real power)

v

Left-hand side represents the
average power entering a
volume enclosure while the
right-hand side represents the
average Ohmic loss of power in
the volume enclosure

P dS =] S 2 E-Edz

s
(imaginary partrof the expression stating
the Complex vector theorem and the

balance of reactive power)

After a simple algebra

«—

§ reactlve S

zwj[ 3 ﬂHl )-2(Len £ YJar

Left-hand side represents the reactive power
flowing into a volume enclosure while the right-
hand side is equal to 2w times the difference
between the average energies stored in electric
and magnetic fields in the volume.
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%wn/[ow wn

A conducting element through which an oscillating current passes can radiate
electromagnetic energy.

We may be interested to radiate out electromagnetic energy into space either in
many directions or in a specific direction at the terminating end of the transmission
line. In order to implement the radiation of electromagnetic energy, a transmission
line is terminated in a radiating system called the antenna. Further, at the
receiving end we need to have a receiving antenna to receive electromagnetic
energy from space and subsequently make it propagate through a transmission
line in a receiving system. We can apply the concept of vector potential to study
some of the fundamentals of conduction current antennas such as a dipole

antenna.
el i diple

The infinitesimal dipole, also called the Hertzian dipole, is an oscillating filamentary current
element of infinitesimal length over which the amplitude of the current remains uniform.
Although the infinitesimal dipole is not a practical antenna, the results of its analysis are of

immense significance in establishing a number of important concepts of practical antennas.

Further, a finite-length dipole can be considered as constituted by a number of individual
infinitesimal dipoles, and therefore the results of analysis of an individual infinitesimal
dipole can be integrated to obtain the results of a finite-length dipole antenna.
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Let us analyse the infinitesimal dipole in spherical
coordinate system of coordinates (r, 8, ¢), considering
the element of length d/ of the current element at the
origin of coordinates.

For the sake of convenience, let us consider the
current element as aligned along z in free space.
Over the infinitesimal length d/, the current / of the
element is considered as constant.

Vector potential component along z
at the point P (r,6,¢) due to the
current element at the origin (0,0,0)

l .

Idl] i
A, =20 2 exp(—jB7)
A r

(recalled from Chapter 5)
(with the factor exp(jat) understood)

/ AHZ—AZSiIlQZ—4——
A=A4.a, + A,a,+A4,a, y

_ f—;%ﬂ(cosﬁﬁr —sin0a,)exp(—jfr)

s =0

l

A = A cosO =

w, 1dl

Y
L, 1dl

T r

From the geometry of the problem

———cosfexp(—jLr)
r

s @exp(—jLr)

VvV~
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A=Aa, + Aya, + Aja, =

VV-A

@’ Ho&y

E=—jo(4d+—5—>)

VA

1dl
5—0—(0086’61 —sinfa,)exp(—jfr) (rewritten)
T r

(with the factor exp(jef) understood)

(both recalled from Chapter 5)

H =

Ky

Therefore, for this purpose we need to find

VV-A and V x A.

V-

V-

A =A_cosl = —Lﬂcosﬁexp( jpr)
4 r
A=A sing =01 G Dexp—jpr)!
4 r
A¢ =0 (recalled)

l

18(rA) I dsin64) 1 4,)
2 ar  rsin® 00 rsin@ o¢

A=

l (derived in Chapter 2)

2

o Holdl (COS , OUr(exp— jBr)) _ exp(=jpr) &sin’ ) }

4r or sin @ o0
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g I )
V-4 :ﬂo_k‘il cosg 20 (eXP= A1) _exp(=jpr) O(sin” 0)
4 or sin 00

J (rewritten)

J <—— Carrying out the differentiations

2

v. 4= told! (cos@{exp(— B+ () (=B exp(—iBr)t— PP 5 i ecosej
4 sin &

J <+<—— Simplifies to

_’Z(;jdl(:z +Jf)cost96xp(—j,8r)

V-A=
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-~ —uldl 1 i
V-A4= ’Zo (— 'B)cosé’exp( —JjpPr) (rewritten)
T or

Similarly using the expression for the gradient of a scalar given in Chapter 2, we an
find the gradient of the scalar, here being the divergence of the vector potential, the

latter given by the above expression, as follows:

VV-ZI:’UO[C”K2 +2j'8—'82j0036?51r+( J'Bjsmé?ae}:xp( Jpr)
r

3 2
4 r

r r v

Further, similarly using the expression for the curl of a vector given in Chapter 2, we
can write the expression for curl of the vector potential as follows:

L (8(sm6’A) GAJ +1( 1 aAr_é(rA¢)j5

VxAd=— .
rsin @ tole ol r\siné@ O¢ or
+l O(rd,) 0OA, 5
r\ or 06)"
9
) 0¢
L 4,=0

50
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A= Aa, +A9a9+A¢a¢—

Ly 1dl

(cos@a, —sinba,)exp(—jLr)

4 r &
: 2
\AY% A:,u()]dl %+2]£8_,8_ cos@ﬁr+(—+£)sin6’c_ie exp(—jfr)
4 r r v r r
l VV- A
E = —]a)(A+ :
| @’ Ho&y

—

47

+(( 2,28 _F
p

27"3 ,B

/

E=FEa +Eya,+Ea,

E= —]a)—]dl( (cos@a. —smba,)exp(—jLr)

l

~)cosdd, +(ﬂlr +,6{£2)sin¢9ﬁ9jjexp(—jﬂr)

cosé’(i3 + J—Zj exp(—jfr)

r r

sinﬁ(_’gz L +j'8jexp( iB7)
s r v

"
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—_—

Vo (a(m) OA jﬁ
or
l \ A = A cosf = —]Lﬂcosﬁexp( jpr)
- Vx4 (
H = Ae:—Azsiné?:—ﬂ@siné?exp(—jﬂr)
M Az r J
8(1 cos@exp(—jfr))
Ao iy, —osingexp-jpr) %, Z
Lo 4 or oo
<——  Carrying out differentiation
H —I—dlsm £+— exp(—jfr) _
’ 4z roor’ H,=0
~
\ A, - |
_. . N ~ Idl . jp
H=Ha, +H,,+H,ad, H, —Esmé’[—+r—je><p( Jﬂr)




Idl 1 ]
Er:—]—@cosé’ —+J— exp(—jpr) o
T 7 2 Infinitesimal
7 i ,82 . % <«— dipole field
_Jjldin, — J components put
Ey,=— T T 0( - Tyt jexp( JBr) together
E, = &
H =0 Time dependence exp(jwt)
r is understood in field
H, = expressions here and in the
dl analysis to follow
1 : :
H,=——- £+— exp(—jfr)
47[ rooort )
) At large distances from the infinitesimal dipole, we
b can ignore the terms containing higher powers of r
in the denominators of the field expressions
E, =2 ra1sin 0 exp(—jB )
drr Infinitesimal dipole far-field
3 r components
H, =2 Idisin 0 exp(—jfr)
A r

|

J

& =1, (far-field wave impedance of an infinitesimal dipole
H¢ becoming equal to free-space intrinsic impedance)
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Power radiated at large distances from an infinitesimal dipole

da, d, a,
ijcom lf:x:ll_;’;xl?*:l O E9 0 :lEQH;Zir
Pl 2 2 o2
0 0  H, N
2 Eg —
- lno—ﬂz(fdz)z sin’ 6.
2 (4mr)
H¢ =
<+<— Taking the real part
g 1 = et S 1 2 .
Pyaee= —ReExH == WP~ (a1 sin® 66,
2 2 (4r)

Let us now find the power radiated out from the
infinitesimal dipole in all directions.

Element of power dP propagating through an annular disc of
element of area dS = 2zarsindrd@ at an angle 8 on the surface
of a sphere of radius r

|

average

o B
4rr

Jb

4 r

3N

Idlism @exp(—jpr)

Idisin @exp(—jpr)

dP=P,_ _-dSd :%Re(ﬁxﬁ*)-d&_ir :%Re(ﬁxﬁ*)-a’,,zmsinerde

54



g = > % — 1 - > %k — .
dP =P -dSa. %Re(ExH )-dSa, =§Re(E><H )-a.2xrsmOrdf (rewritten)

average

2
J< f)avera e lReEXﬁ* :l UOﬂ 2 (]dl)2 Siﬂz 6ar
=2 2 (4mr)

ap=L 1S _(Idl)* sin® 0d, - @, 27 rsin O rd 6 = s (Idl)* sin> 0d6
2 (4xr)’ 167

l <— |ntegrating

T 2 2 T
P= jdp = IM(]dl)z sin® GO = M([dl)zjsif ad o
y, 167 167 )

— jsmwde:f )
) 3
sin® @40 = | sin” @sin A Gd O =| —sin” Gd(cosb)
p=b s | o o
167

= —]r(l —cos’ 8)d(cosh) = —T[d(cos&) —cos” @d(cosO)]
0 0

cos’ 0 ﬂ
3

=—[7j[a’(cos9)—7jzcos2 @d(cosf)] =—[cosl — 15 =
0 0
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B’ 4 Mo =~ Mo/ &g =1207
P:”O_(]dly_ —

167 3 Be2n/A

2
P=4072]? ﬂ (power radiated out at large distances from an
A infinitesimal dipole in all directions)

We are going to use later the above expression for
radiated power in the further study of the property of an
infinitesimal dipole
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Power (reactive power) associated with near-field quantities of an

infinitesimal dipole

Jjldln, B

E}, = ——?COSQ(F—‘FTJCXP(—]ﬂV)

2

EQ:—M% 0(_'3 > ]ﬂjexp( JBr)

4 v

E =0 ( (infinitesimal dipole field
¢ components) (recalled)
H =0
H,=0
1 dl : jp
H¢=4 H(—+— exp(—jfr)
T r r )
< Significant field quantities are those
involving higher powers of rin in the
denominators for distances close to
jn ) the infinitesimal dipole
E, =——"2IdlcosOexp(—jfr)
273y
n : , " P .
E,=— (;3 Idisin @ exp(—jBr) ¢ (near-field components of an infinitesimal dipole)
H,=— jBr)
’ 4w

3

Y



ES

E,H

EH

E,H and E_H, are eachimaginary quantities

P

P

P

average

complex

complex

'(

_'(

ﬂﬂ

(G

ﬂﬁ

|

(G

)(sz) sin’ @

)(Idl) sin & cosf

J 1o PN
| =——" _Jdlcos@exp(—jfLBr
; Ao p(—jpBr)
L — E, = —417;;3 Idlsin O exp(—jB7)
1
J o
¢ 4 r

v

P

(near-field components of an infinitesimal dipole)

(rewritten)

1 k5 L
— §(E9H¢ar _Er[—[¢a9) (recalled)

becomesan imaginary quantity

Near-field quantities do not correspond to the
propagation of power. The power associated with these
quantities is of non-radiative type, which can also be
referred to as the reactive power. It is implied that the
non-radiative power associated with the near-field
quantities would be retured to source, feeding this power
to the infinitesimal dipole.
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Directive gain and directivity of an infinitesimal dipole

2
P=4072]? dl (power radiated out at large distances from an
A infinitesimal dipole in all directions) (recalled)

The average power density, that is, the average power per unit area radiated out

of an infinitesimal dipole, W, is obtained by dividing P by the area of the sphere
4 72 of radius r-

v

2
W — P . 1047 (dl (average power density being also the power density radiated out
— "o — A1 — 72 by an equivalent isotropic radiator that radiates equally in all

directions, whose power P equals to that of the infinitesimal dipole)
1 I 3 o 1 7 182 2 .2
W= > Re(ExH )=——"—(Idl)"sin” @ (power density in the direction ¢)

2@rr)
\ o =AMy &y =120 and =27/ A
15717

2
11/4 . (dzlj sin? @ (power density in the direction 6)
A

l r

w3 .,
—>Dg =—=—8In" @ <«— Directive gain of an infinitesimal dipole
w, 2
14— 6 = z
2
3 ., 3 ., 3 o . - .
D, = Esm 0= Esm (r/2)= > =1.5 <«— Directivity (maximum directive gain) of an 59

infinitesimal dipole



Radiation resistance of an infinitesimal dipole

The radiation resistance R, of an infinitesimal dipole is the resistance of an
equivalent resistor that consumes the same power as that radiated out at large
distances from an infinitesimal dipole in all directions, namely P:
2
P = l]2R «— P= 40”2]2(£j (Time-averaged power for time-harmonic current with
: an amplitude / radiated out at large distances from an
l infinitesimal dipole in all directions) (recalled)

2
242 dl ? 1 b R =80 2 di e : e ,
40777 7 — 51 R — &= 7T 7 (radiation resistance of an infinitesimal dipole)

Radiation pattern of an infinitesimal dipole

The radiation pattern of an antenna is the graphical representation of the radiation properties of
the antenna with respect to related variables such as the field strength and power density as a
function of space. Although the radiation pattern is three-dimensional, it is common to describe it
in two planar patterns (obtained by making two slices through the three-dimensional pattern): E-
plane and H-plane patterns, where the E-plane is the plane containing the electric field vector
and the direction of maximum radiation from the antenna and the H-plane is the plane containing
the magnetic field vector and the direction of maximum radiation from the antenna.

<«— Infinitesimal dipole __
aligned vertically

Horizontal (H-plane) pattern vertical (E-plane) pattern 60



«— Infinitesimal dipole _
aligned vertically

Horizontal (H-plane) pattern vertical (E-plane) pattern

The radiation pattern may can be plotted either as the horizontal pattern or the vertical pattern
depending on whether the pattern is plotted on

+ the horizontal plane (6= #/12) on which the value of ¢ does not vary and remains constant at
the value #= 712 and the value of ¢ varies (H-plane pattern),

or

« the vertical plane on which the value of ¢ remains constant (¢ = constant) and the value of &
varies (E-plane pattern).

In the light of this nomenclature of the radiation pattern, the horizontal pattern (H-plane pattern)
(60 = ©2) is a circle corresponding to the constant amplitude of E, . On the other hand, the
vertical pattern (E-plane pattern) (¢ = constant) depends on the angle 6, the amplitude of E,
becoming zero and maximum for 8 = 0 and @ = #/2, respectively. Thus, the shape of the
vertical pattern (E-plane pattern) becomes the figure of infinity («0) and remains azimuthally
symmetric (6/0¢ = 0) about the axis of the dipole.
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Half-power bandwidth (HPBW) of an infinitesimal dipole

2 2
W = 1571 (di sin? @ (power density in the direction 6)
r? s
Takes on maximum values at 0= /2 Takes on half the maximum values at 8= 7/4 and &
corresponding to sin?6 = 1 = 3714 corresponding to sin?d =%, which in turn

leads to the half power bandwidth (HPBW)

l

HPBW = (37/4)—(x/4)=7/2

(infinitesimal dipole)

Effective aperture area of an infinitesimal dipole

The antenna is used not only to radiate power in the transmitting mode, but also to receive
power and deliver it to a load in the receiving mode. Interestingly, an antenna enjoys
identical radiation and circuit characteristics in transmitting and receiving modes according to
the reciprocity theorem of circuit theory:

In any linear network containing bilateral linear impedances and energy sources, the
ratio of the voltage on one mesh to the current in another mesh would remain

unaltered if the voltage and the current were interchanged, the other sources being
removed.
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V1+°+”/’ - — -

Transmitting and receiving Network equivalent of the system
antennas #1 and #2 separated by a of transmitting and receiving
distance showing the voltages and antennas #1 and #2 showing the
currents at their respective voltages and currents at the input
terminals and output terminals

- Vi=2,1,+2,1, — Circuit voltages and currents related by circuit
V2 — Zz111 + 222]2 impedances in the equivalent network

14— Z,, =0 (Transmitting mode of antenna #1)

(transfer impedance taken as nil for antenna #2

=211 considered far from antenna #1)
" |
Z,, =— <— Selfimpedance of antenna #1
1, I Z,, # 0 (providing coupling between

antennas #1 and #2)

— V, =71, +Z,,1, (receiving mode of antenna #1)
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Vi=2Z 1, +Z,1, (recalled)

(receiving mode of antenna #1)

Internal impedance of
Z11 7 constant voltage source

Load . :|_

impedance
N

emf of the constant voltage source
Z,, I, taken on the infinitesimal
dipole of length / as the voltage .
induced El/, with electric field E

assumed over the length / T

emf of constant voltage
¥ source
Z, Q) Z1,l;

Equivalent network of antenna #1 in
the receiving mode

Z, =R+ X, =R + jX, R R

f

R, = R (radiation resistance) —> _
|:j| Z =R +X, @ E|

X, = X, (antennareactance) —»

(receiving mode)

PJ

S El X

JR +R ) +(X, +X,) 1
(amplitude of current through the Equivalent network of the infinitesimal
equivalent network) dipole in the receiving mode
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El R R

I = = = (rewritten) A A
VR +R) +(X,+X,)
| D Z=RuHX, & E
15
I)load - 51 Rl ¢ :_
Xa
1 El 2
=—( > 2) R; <«— Power delivered to the load
2 J(R+R) +(X,+X,)
<— R, =R and X, = X , (under maximum power transfer condition)
v 272
P .= l(i)zRZ = l(ﬂ)ﬁ{r — £l (maximum power transferred to load)
’ 2 J(2R))’ 2 2R S8R,
4 _ Pload,max (maximum effective 4 = @ <« Effective aperture area A, defined
¢.max W  aperture area) W in terms of power density W
l incident on the antenna
£
S8R
Ae max — -
’ /4
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A _ 8R, (maximum effective aperture area) (rewritten)
e, max
’ /4
= 1 = et
| p A Reixi
SR, 1 Interpreting with reference 2
e,max W W= EEH to an infinitesimal dipole
— E,=E and H,=H
l E*l’ — IE
QR R =807’ —
4 3R — A
’ lEH T =n,=1207
3 . . P .
Ae max = 8— (maximum effective aperture area of an infinitesimal dipole)
’ T
/7 D, =— <«— (directivity of an infinitesimal dipole)

A _12

= <+— Ratio of maximum effective aperture area to directivity of an infinitesimal dipole
D, 4r
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60«9&»»7 of arAenna %&G’af&
MMWMMW%W”MM%

Let us take two arbitrary antennas #1 and #2 separated by a distance r and let Dy, and D,
be their directive gains in the direction of antennas #2 and #1 respectively; and further let
P, represent the power transmitted by antenna #1 in all directions.

|

W, W, (4zr’) P

D, = < W, = 5 (recalled)
g })ﬂ Bl drrr
l A r? l
P
W — P\D,, 4 =-t (recalled) D, = w (recalled)
Y 4xr? e W,
Interpreting P,,,4 @s power recived P, l
by antenna #2
l D - W(arr?)
P, : P
Eliminating W, — A4,, =—
m
l Directive gain D, of an antenna in terms
P, D, A, of power density W radiated in a given
re =% > direction and power P radiated in all
B, A7 directions
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Prz DglAe2
P, 47>
Prl DgZAel
P, 47>

(recalled) (relation holding good for antenna #1 in transmitting
mode and antenna #2 in receiving mode)

<+— Corresponding relation if we now take antenna #2 in transmitting mode and
antenna #1 in receiving mode

v

l

Prz Prl <— |nterpreting reciprocity theorem of circuit theory

Arr? 4 7or
el — Ae2
Dg1 Dg2
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A
L —2¢2 (rewritten)

Ae
D

gl g2

l

Since antennas #1 and #2 are arbitrarily chosen, we conclude from the above relation
that the ratio of the effective aperture area to directive gain is a constant quantity
irrespective of the antenna system. The relation obviously holds good also when we take
the maximum value of the effective aperture area (A, = A, ,2x) and the maximum value
of the directive gain, the latter being the directivity (Dy, = Dy,). Therefore, we also get the
ratio of the effective aperture area to directive gain as a constant quantity irrespective of

the antenna system, enabling us to write:

l

A

el,max e2,max
DOI D02
2
Ae,max I Ae,rnax . ﬂ'

= constant

0
(irrespective of antenna)

Ae’max 22 (valid for any type of antenna)

D, 4r

(found already for a particular antenna,
namely, the infinitesimal dipole)
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W yones
Consider an antenna with its significant linear dimension as D and an observation point P at a

distance r from its mid-point O. We can find the different ranges of an antenna depending upon
the relative value of r with respect to the antenna dimension D and wavelength A.

AP =[(OA)* + (OP)> —2(OA)(OP) cos LZAOP]"?

| OP=r,AB=D,0A=0B=D/2,AP =R, /AOP =0

2
R=(r’ +D——2r2c036’)”2
4 2

At large distances AP
and OP tend to —
become parallel

r—R;ONzgcosé?

l

D
R=r——cos@
2
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2
R=("+ DT — 2r§cos 0)"? (recalled)

l

D2 D g 1/2 D 0 D2 1/2
COS COS
R=rl1+—— =rl1—( ——)
4r v r 4y
D D*r D’r
= (r——cosé)+ 1—cos* )+ cos@(1—cos* @) +.......
( 2 ) 87 ( ) 16#° ( )
2 3
=(r—Bcost9)+D :sin26?+ D ’; cos@sin’ O +........
2 8r 16r

At large distances, we can ignore the second, third and higher order
terms, in view of r and its higher powers appearing in the
denominators of these terms

D
R=r——cos@
2

(expression that agrees to what we obtained earlier from geometrical consideration)
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2 3

D7r . r ,
> sin® 0+ 3 cos@sin” O +........ (recalled)

8r 167

R :(r—§c0s9)+

IRE sets a standard to ignore the second and higher order terms with respect to the first term
in the above expression so that one is able to use the following expression in the far-field
zone:

R=r —gcose (far-field expression)

Hence, as per IRE standard, one may assign a phase difference A¢ equal to 7/8
corresponding to the path difference equal to the maximum value of the second term namely

D’r .
;smzé’
87 l
. . D’r . D’r . D’
maximum value of path difference = . ;smzﬁz . ;smzﬂ/2= . ;
r r r

|

Phase difference = = (Path difference maximum) =

|

_2D?
A

|

2D*/A<r<o (far-field zone)

27 D?
2= 7 =2 (setby IRE standard)
A 8r 8

r
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2 3

D ) D
T sin2@+—"

r? 167°

D : .
R=(r— - cos 0) + cos@sin’ O +........ (recalled again)

We next find the condition for distances that enables us to ignore the third and higher order
terms in view of r and its higher powers appearing in the denominators of these terms,
however retaining the second and first terms. Again, according to IRE standard, we set the
value n/8 for the phase difference corresponding to the maximum value of the third term,
namely

D’r

Do e — G
%(cos@sin2 9)=0

D’r 2 l

16r° 33 cosO(2sin Ocosd) +sin’ O(—sin 0) = 0

(maximum value of l

the third term)
tané’zx/a;siné?: V2 =\/§'
l J2+1 3

L cos@sin’ @ =

2
343
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2 3

R:(r—Bcosﬁ)+D;sm29+DZcos@sinz6’+ ........ -
2 8r 167
l ) Recalled
3
Dr 2 (maximum value of the third term)
167° 3./3
l 3
maximum value of path difference= D ’; 2
| 16r° 343
3
Phasedifferencezz—”(Path differencemaximum)= 2m D : 2 _T (set by IRE standard)
A 16r° 33 8

3 3
r= |22 062, /2
3.3 4 A
0<r<0.62D’ /A (near-field zone)
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Thus, with reference to antenna we can identify the following zones:

2D*/ A <r <o (far-field zone);0 < » < 0.62Y D’/ A (near - field zone)
0.62V D’/ A <r <2D’/ A (intermediate zone)

We may note the following points of interest with respect to the above three zones:

Reactive near-field zone: 0<r <0.62 D>/ A
Radiative near-field zone (Fresnel region): 0.62v D>/ A <r<2D?/ A

Radiative far-field zone (Fraunhofer region): 2D* /A < r < o

In reactive near-field zone, the field amplitude factor and the phase contributions from the
secondary source elements from the antenna both vary with the change in the position of the
receiving point. Also, in this region, the reactive power dominates significantly over the
radiative power ( p — 0 as has been shown earlier with reference to an infinitesimal
dipole). In other words, the near-field quantities do not correspond to the propagation of
power. The power associated with these quantities is of non-radiative type, which can also
be referred to as the reactive power.

In radiative near-field zone (Fresnel region), the phase contributions from the secondary
source elements from the antenna vary though the amplitude factor 1/r remains constant as
the position of the receiving point is varied. Also, in this region, the radiative power is greater
than the reactive power.

In radiative far-field zone (Fraunhofer region), the amplitude factor 1/r as well as the phase
contributions from the secondary source elements from the antenna remains constant as the
position of the receiving point is varied. Consequently, the field pattern becomes
independent of the position of the receiving point. Also, in this region, the radiative power
dominates significantly over the reactive power.
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Let us now proceed to relate the power received and delivered to a load by a receiving
antenna to the power transmitted by a transmitting antenna at a distance in terms of their
respective power gains and wavelength corresponding to the operating frequency.

We will derive the relation under the condition that the receiving antenna is placed in the
direction of the maximum power density radiated by the transmitting antenna and that

the maximum power is delivered to the load.

In the transmitting mode the antenna is
connected to a source of power by a
transmission line. Similarly, in the receiving
mode, the .antenna is connected to a load by a
transmission line. Due to losses in the
transmission line, the power at the output end
of the transmission line of the antenna is less
than the power at its input end by a factor
called the efficiency of the antenna.

P

t1,output

— e11:;1,input

e, is defined as the efficiency of the transmitting
antenna, the subscript 1 referring to the
transmitting antenna taken as antenna #1 and
the subscript t standing for transmitting mode

62W1

/°—/
Pt1, input

Pt1 , output=e1 Pt1 ,input

T

Transmitting and receiving antennas #1and
#2 showing the powers at the input and
output of the transmission lines connected to
the antennas #1and #2 respectively
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I)tl,output = eIPtl,input (rewritten) W1
£D,, ,/\*—ﬁ\
+— W, =——=%- (recalled) - =
471 1r? Py S esWi
\ Pt1, input \
1 W
Dy =— P—l (recalled) Power density due to P, outpur=€1Pt nput
e .
! ﬂ’mpgt antenna #1 present at the
4rxr \ input of the transmission
line connected to
antenna #2
D,e = u
Bl,input
A7 12 With the help of the relation
m .
Dy =—5— (recalled) (with £, takenas ¢, £}, ;)
1
G = VVl : 2
1 : drr
averagepow erdensity
W, .
- (definedas) —— on comparing
t1,input
47 r? l

Gl — Dglel
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With reference to antenna #2,
effective aperture area may be put as

Power received at the output of
the transmission line connected

P « to antenna #2 (transferred to the
r2,output
A,, =———— load)
e, P e
‘\ Pt1, input
Power density due to antenna #1
appearing at the output of the
transmission line connected to
antenna #2
W,
D,e = P—l (recalled)
t1,input
l A7 r®
v
Eliminating W,
P, output _ AeZDglele2
P 47’

t1,input

N

t1 output_e1

Pt1 ,input

e2W1




P A,D, ee
r2,output _ e2™ " gl¥1v2 (rewritten)
Ptl,input 472-’/' \ AeZ _ /12 ¢ Ae,rnax . 2/2
l D,, 4rn D, 4rx
(valid for any type of antenna)
])rz,output _ Dglengzez /12 T

le input 4 1> 45 Under the assumed condition of
’ maximum power transferred to the

l \ load connected to antenna #2

G, =D, e, andsmilarly G, = D,,e,

})r2output /1 2
Zrzowt _ G G, (—2—
P : 2(47rr)

t1,input
(Friis transmission equation)

Let us take up an example to illustrate Friis transmission equation. Take two identical
antennas having the same gain —one transmitting power while the other receiving
it— both having significant dimension given as 20 cm. The antennas are separated
by a distance equal to 1.5 times the minimum distance prescribed by Fraunhofer
radiative far-field zone, arranged in a measurement setup using 10 GHz operating
frequency. Calculate the antenna gain if the received power measured is 20 dB below
the transmitted power.

Let us begin with finding the distance r between the antennas according to its limit given in
terms of Fraunhofer radiative far-field zone: 2D* / 1 < r < o0,
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D =20cm (given)

2D’ 2(20)°

r=1.5x =1.5x% =(20)> =400 cm

_ _ 9 - P :
—f =10GHz =10x10" Hz (given) ~— 10log,, F =20dB (given)

10 P

£ 10x10°

1 2 p b
_:GG(—)2 - r2,output —GG( ) 102:_1
2 192
10 l Ay ot . l P
1
PP Gz( 4 )2 < \
10 l arr PrZ,output 1 Pr B 1
— 3 <4+— - = _2
1 A G, =G, =G say o 10 P 10
10 = G 47 r) (identical antennas)
l \— ﬂ, = 3 cm
47 x40 (recalled)
G= =167.47 L 400em

G (dB)=10log,,167.47
~10%2.239=22.39dB 80



Let us now appreciate a method, well known as three-antenna method, based on
Friis transmission equation, to find the gain of an antenna, if you can measure the
power transmitted by an antenna and the power received by another antenna for a

given operating frequency.

Let us have three antennas labeled as #1, #2 and #3 respectively. Since we can measure
power received P,, by antenna #2 due to power transmitted P;, by antenna #1 at a known
distance r, we can use the following relation given by Friis transmission equation in terms of
the antenna gains G, and G, and the wavelength A corresponding to the operating frequency:

P A
2 =GG, (—)2 (given by Friis transmission equation)
F, Tr )
l ¢ - [(GG)GG)
1 G2G3
P Arr ,
GG = ) — c=/~4 s G _\/(G2G3)(G1G2) [
P G,G
l it 103
. G - J (G,G)(G,G))
T 3
G — r2 ( ’f) G1G2 )
Bl ¢
1 l
Physical quantities in the right hand side can be Hence the gains of all the
measured and hence we can determine the ] three antennas can be
gain product G,G,. Following the same determined.
approach, we can then determine G,G, and 81

G,G; as well.



dl

2
R = 80%2(;) (radiation resistance of an infinitesimal dipole) (recalled)

l

Radiation resistance of an infinitesimal dipole is very small since its length d/ << A.

l

1

P =_—_7]?>R (powerradiated out at large distances from an
2 " infinitesimal dipole in all directions) (recalled)

l

Power P radiated out at large distances from an infinitesimal dipole in all directions
becomes very small unless we increase the current / to a very large value.

l

Therefore, let us look forward to more practical antennas such as the finite-length
dipole for a higher value of the radiation resistance and consequently a lesser amount
of current through it required for a larger radiated power.
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Open-ended two-wire transmission line

y Y oS M
showing standing-wave current - AV
distribution on it by dotted curve AN ST
M and N are points on the two wires T A Pl T T -
equidistant from their respective ends
S and T. Typically, MS = NT = 4/4 for a
centre-fed, half-wave (4/2) dipole to M’ and N’ are the points of bending
be made out of the wires of the line. equidistant from their respective

ends S’and T'.
4 S
Open-ended two-wire transmission line ~ T
with wires bent at right angles at the open naf
ends to form a centre-fed, finite-length L M
dipole showing standing-wave current . N
distribution on it by dotted curve J\ 0
4

The current is nil at the open ends of /' ALT-;
the line or dipole and the current
distribution typically on a centre-fed, _
half-wave (1/2) dipole of length / = /2 Typically, M'S' = N'T’ = /4 for a
may be represented as centre-fed, half-wave (A/2) dipole to

2 be made out of the wires of the line.

I=1,cosffz=1,cos—z

t
[1/2(=—A/4)<0<1/2(=A/4)]

(z is measured from the middle of the dipole: z = 0)



Finite-length dipole of length / = MN aligned ,P

vertically along z showing two infinitesimal current p %
elements at the points A and B and a distant point M i)ZZ'CCOO‘ZQ //’///
P where the field of the dipole is sought — f//// e //
A //// I"/// /7
MN =/ o
= 2 T~
— HI /}>/ . S—r+|z|cosb
OM=0ON=//2 | y // =r-z cos0
0% /
Distance of the point A from the middle | “~~..\/>\;|Z|COS9
O of the dipole 2 o
/
—Z= ‘Z‘ l Aos@
/2 B
Distance of the point B from the middle
O of the dipole N
==
OP=r

AP :r—‘z‘cosﬁzr—zcosé’
AN

z= ‘z‘ (interpreted as positive for the positive half OM of the dipole)

BP =r+|z|cos@ =r—zcosf
AN

z = —‘Z‘ (interpreted as negative for the negative half ON of the dipole)
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~
r-|z|cos@ /// “,
=r-z cosd_-~

Vd
//&%r+|z|cos(9
/

2
I=1,cosfz=1, cos=” 2

[—1/2(= —1/4)<0<1/E(—/1/4)]

y Y =r-z cost
/ /
< /
.....\ \/\9
Ay |z|cos®
b%

/
//
l Aos@

/2 B

NP

E, = IdlsmHexp(—],Br)

(dipole current distribution) Az
(infinitesimal dlpole far-field quantity recalled)

Integrating the contributions from infinitesimal dipoles distributed over the entire
length / = 1/2 of a half-wave dipole comprising two halves each of length / = 1/4

_ _ /Y
Eo= JdEH B ;‘; 47z(r—;cost9)
+ j)' J 1P

3,47 (r—zcos0)

l

I,cosfzsinOexp(—jf (r —zcosh))dz

I,cosfzsimBexp(—jf(r—zcosh))dz

(azimuthal electric field component at P due to a half-wave dipole)
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Al4

E,=|dE,= |

0

J 1P I,cosfzsinB@exp(—jfB (r—zcosh))dz
4 (r —zcosfd)

0 .
+ I J TP I,cosfzsin@exp(—jp (r—zcosh))dz
3,47 (r—zcos)

(azimuthal electric field component at P due to a half-wave dipole) (recalled)

<— Approximated by putting in the denominators: 7 —zcosO=r

jcosﬂz exp(—jfB (r —zcosb))dz
4rxr

0

v . . A4
g = Jsin oL, [

+ Icosﬂz exp(—jp (r— zcosH))dz)j

—-A/4

«—  After rearrangement of terms

E@ — .]770 Smgﬁ]O
Tr

exp(—jfr)

x( jcosﬂzexp(jﬂzcos@))dz + Icosﬁzexp(jﬁzcos@))dz)}

0 —-A/4
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Eg — J’?O Smeﬁlo
Tr

exp(—jpr)

x( Icosﬂzexp(j,é’z cosfd))dz + Icosﬂzexp(jﬂzcos@))dz)}

0 —A/4

(rewritten)

«— In view of Icos Lzexp( jPzcosB))dz = expf‘gﬂ. CZOZQ)Z(j cos @ cos [z +sin [z)
sin

Al4

— E,= j%jin Zzb eXp(_jﬂr)Kexp(j,Bcosé?)z (J cos@cosﬂz+sinﬂz)j

r Bsin’ 6 .

N ( exp(jfcosh)z

Bsin? 0 (jcochos,Bz+sin,Bz)j il
sin

—-A/4
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Rewritten

l

E, = j%jin Zzk eXp(_jﬂr)Kexp(ﬂjﬁ.’czozé’)z (jcos@cosfz +sin ﬂz)j
r sin

Al4

0

N exp(jfcosh)z
Ssin® @

—A/4

(jcos@cosfz+sin ,Bz)j il

) In view of therelation f=27/A

v

exp(j;rcosé?—jcosé’ jcosO + exp(—j;rcosé?

J 178 Of, -
E = (] —_ 4+
0= gy CRCIED) Bsin 0 Bsin’ 0

<+«—— Simplifies to

v

‘1. sin 861 ,
Eq = Jno4mﬂ - exp(=jA 1) Bsin’ 0

expjzcosé’ + exp— chosH
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E,=

Ly =

H,

H*

¢

ex 'zcosé’+ex — 'zcosé?
jﬂosmgﬂlo CXp(—jﬁl") p]2 P ]2

4rr Bsin’ 0

eXp jy¥ +exp—jy

< = COS
> 14
; 200{7; cosﬁj
Jlo exp(—jpr) . (half-wave dipole)
4rr sin &
E,
< =1, (relation derived earlier for an infinitesimal dipole
H¢ continuing to be valid for a half-wave dipole)
- 2(:05(72Z cos@)
=y PN
> (half-wave dipole)
.7 2005(7; cosﬁj
— J4y ;
=——>2¢€X r
anr CPUPD TG00
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I, 2cos(§cos@j
E, = I7olo Cexp(—jfr) .
4 r sin &

> (half-wave dipole)
—jl

2 c:os(iZ cosHj .
e 0 exp(jAr) 9) (rewritten)
" Adrr sin &

J

dP being the element of power radiating
through an annular disc of element of area dS
= 2arsinfrd@ at an angle 6 on the surface of a
sphere of radius r

v

szszj%Re(Exﬁ*)-dSﬁr

1 e - .
- jEReE9H¢ar -a, 27 sin Ord 0

2

T
. % 2C0{COS@)
:j%( 0 j 2 77 rsin @ rd @ (half-wave dipole)
0

sin &

(power radiating through a sphere of radius r thus found
using the same approach as that followed earlier while
finding such power for an infinitesimal dipole)



2
. Y 200{722-0059)
P:Ino( OJ . wrsm@rd@ (rewritten)
sin @

n, =120 7

S

T

_cos’ (cos@j
P= 30]OQI 2 do «—— P= ljoer (poyver related to radiation
sin & 2 resistance recalled)

i cosz(;zcosﬁj _ cos{jcos@j
R, =60 a0 «~— | ———~d0=1218
sin

0 0
l (evaluated numerically)

R =60x1.218 =73.08 ohm (half-wave dipole)

(radiation resistance of a
half-wave dipole)
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_cos’ (Zcos@j
do

P=30I" recalled
° ! sin 6 ( )
<— Dividing by 477 7>

i cosz(;rcosé’j
307,° : do
W - ) sin &
0 47 r?

(Average power per unit area radiated out of a
half-wave dipole or power density of an isotropic
radiator equivalent to half-wave dipole)
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Power density of the half-wave dipole in the direction

W—%Re(ExH )—%Re(E H* )_ ! 2[

l

L, =

H*

¢

— 1,=1207

200{”0039)
2

W =151,
drr

sin &

\

J 770]0
dr

— I
4rr

1

drrr

exp(—jfr)

=—>"exp(jfr)

ZCO{ECOSHJ
2

sin @

2cos(ﬂcosﬁj
2

sin @

(half-wave dipole)

2 200{”0059)
2
j sin @

.

(recalled)
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2 2f
- 2 COS (2c056’j
1 2¢co 2cos<9 30]02J‘ : do
W =151,> —— , wo—_ o  sin0
4 r sin & 0~ A7
Tr
(rewritten) ‘
2
cos(;zcosé?j
2 0
sin
W . cosz(ﬂcosé?)
D = — 2
c = e j : do=1218
©  _cos 20059 0 sin &
j : dé
7 sin &
l 2
cos(;rcosﬁj
2 :
sin &
D = (directive gain) (half-wave dipole) 94




g

2
cos(ﬂcosﬁj
2

sin &

1.218

(directive gain) (rewritten)

\4— Maximised by taking @ = %

2

T T
co{zcoszj cos(C=x0)
T 2 .27r
Sm ) sz ) 5
1.218 B 1.218 ©1.218

=1.64 (directivity) (half-wave dipole)
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J o1, .
E, = exp(—jpfpr
0 4 p(—jBr) o
7 ZCOS(ZCOS@)
oLy
E L=
( H)amphtude 4.7 Sm@

(EH )amplitude

2cos(7zcos6’j
2
Si

(half-wave dipole) (recalled)

3

me Ay T

l

cos ~cosf
(EH )amplitude _ 2 _ 1
(EQ )amplitude S m 9 \/E

max

The angle between the two solutions can be
found numerically as 78°.

l

HPBW = 780

Value so assigned makes the square
of the normalised quantity equal to 72
corresponding to half power
bandwidth HPBW
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Comparison between infinitesimal and half-wave dipoles

Antenna type Radiation | 0 tivity | HPBW
resistance
Infinitesimal .
: Insignificant 1.5 900
dipole
Half-wave dipole 73.08 ohm 1.64 780

The radiation resistance of a finite-length antenna such as the half-wave dipole is higher than that of an
infinitesimal dipole. This calls for lesser required current for a finite-length antenna than for an infinitesimal
dipole.

It often becomes necessary to beam power from an antenna in one specified direction.

How much an antenna is capable of doing so can be estimated both by the antenna HPBW and the
directivity, the latter rather more quantitatively.

Both the HPBW and the directivity of a finite-length antenna are greater than those of an infinitesimal dipole.

One can increase the directivity of an antenna by designing its geometry/shape and size. However, such an
approach becomes somewhat difficult to implement and often leads to an inconvenient antenna
geometry/shape and size for a practical antenna design.

The alternative approach is to use linear (one-dimensional), planar (two-dimensional) or volume (three-
dimensional) array of identical antenna elements. Moreover, such an array antenna provides means to steer
the beam of the antenna electronically rather than mechanically, say, by physically rotating a bulky antenna.

For the sake of simplicity, let us consider here for analysis a uniform linear array of identical antenna
elements.



et

amfm

elernends

Successive (progressive) phase difference
between the electric fields due to uniform
array of identical antenna elements at a large
distance from the array

}
v = fdcosO+¢

S = wave phase propagation constant

d = distance between successive array
elements

¢ = angular direction of the observation
point from the line of array

& = excitation phase difference between
successive array elements, being the
excitation phase lead of an element with
respect to the next lower order element

"

T
d
4
d cosf

f

An array of elements showing the
direction of a distant observation point
and correspondingly parallel rays of
radiated waves from the elements in the
same direction

5

With due consideration to the above progressive phase difference y, let us next draw the
vector diagram for the electric field due to each of the array elements at a large distance
from the array and subsequently take the vector sum of the contributions from all the

elements of the array.
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Vector diagram for electric fields due to array elements #1, #2, #3 and
#4 at a large distance from the array considering typically four elements,
showing also the vector sum A A,

AA = AA, +AA, +A A, +AA,

where A A,, A,A,,A A, and A A,

represent electric fields at the observation
point due to antenna elements #1, #2, #3
and #4 respectively

ZS,ALA, = ZS,AA, = /S AA =y

Aq
ZAAA, =T~y

ZA A= %

/A AO0=" ; v

ZA A0+ ZA,A O+ /A OA, =1

|

ZAOA, =7—/AA,0-LA,A O
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sAAN0=""Y  an0=""Y
2\ o 2
(recalled)

l

LA OA, =n—-ZAA,0-ZLA,A,O (recalled)

l (recalled)
— — O
ZAOA, =72 2"V _\,
2 2
R 4
l (e-w2 N
|
ZA,OA, =ZA0A, = ZA,0A, =y |
A, M Az

ZAOA, = ZAOA, + LA, O0A; + LA, 0A , + LA ,OA; (recalled)
=y +y+y+y =4y.

AM =O0A, sin ZA,OM = OA, sm%:Rsm% — OA =R
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AM=R sin% (recalled) 2

\ _— A A, = E,say R "
()2 | (z-y)2
|
E,=A,A, =2AM=2Rsin % |
2 A, M Ay
l (electric field magnitude
due to a single array (recalled)
5 element)
R= 0 ” 0
. R
2smn 2
2 | v
: Ay Ad N As
A N=0A,;sin ZA ON = Rsin——
2 (recalled)

|

E,=AA, =2A N =2Rsin 4;” )

(resultant electric field typically due to 4 array elements) (recalled)
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E, . 4
E,=—2 smjl// (rewritten)

sinﬂ

(resultant electric field typically due to 4 array elements)

<— Generalisation taking N elements

sin Ny
E, = Eq sin—Nl// — 2 i
R = AF = ——=— (array factor defined as)
sin 2. 2 in?
sin -
2 2

| l

— (AF)_.. =N (maximum array factor)
Ly = (E)(AF)

l (AF), = AF (normalised array factor defined as)
(AF)max
Product of the array factor with
the electric field amplitude due l
an individual array element . Ny
gives the electric field AF 1 SIn ———
amplitude due to the array of all (AF) = —

2
the elements put together. " (AF),.., N _. V¥
put tog (AF),,, sin ‘02



For smaller values of the successive phase
difference w between the electric fields due
to the elements, we may take sin(w/2)= w/2

l¢————

sin Nzl//
AF) = >
( )Il Nl//
2

Er
AF SIN ——
(7R) (AF)max
E max

E, =(E))(AF) (recalled)
l

—& — AF
EO
Er
Do BE - (a),
E‘R) (AF)max
EO max
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AF sin ——— Magnitude of
S =(AF), = ——= T normalised array
ER) (AF)max v IAF,| factor versus /2 plot
EO max 2

(rewritten)

| | |
0 Olr 02r 03m 04n 0.5z 0.6m 0.7r 08 09r Ixn

v —

The field pattern thus follows the normalised array factor pattern which follows the well
known sinx/x function (here Ny/2 interpreted as x).

The minima of the function takes place at Nw/2 = r, 27, 3, 4x, 57, ...... where the function
becomes a null.

The principal maximum of the function occurs at Nw/2 = 0 which also corresponds to ¢ = 0.

The first negative maximum occurs at Nyw/2 = 1.43 rand the first positive maximum at Ny/2
=2.46r.
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Magnitude of
T normalised array

" factor versus /2 plot

025
020 LN

| |
0 O0ln 02r 03nm 047 057z 0.6x 0.7t 08t 09x Ix

v —

However, depending on the value of the number of elements, some of the
minima of the normalised array factor predicted above at Ny/2 = =, 2r, 37, 4r,
Y/ A would be ‘missing’ being replaced by the principal maxima.

For example, if we take the number of elements of the array as N = 5, then
the Nt minimum, here, the fifth minimum predicted above as Ny/2 = 5z or
w2 =57IN =545 = 7 will be missing only to be replaced by a principal
maximum.

We can appreciate this by noting that, at /2 = 7, the value of the normalised

array factor takes on the maximum value of unity [(1)(N)/N = 1], which
corresponds to the principal maximum that occurs at @/2 = 0.
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Broadside array,

Let us design the linear array to make it a broadside array such that we obtain a
principal maximum in a direction normal to the line of the array, that is, at = #/2.

o~
2
v = fdcosO+¢& " . Broad-side array
\ condition
| N

(corresponding to principal maximum)
broad-sid
O:ﬂdcosg+§:(ﬂd)(0)+§:§ (broad-side array)
l \—> v = fd cos@+ &

Excitation phase difference & between successive
elements has to be nil for a broad-side array. w = Pd cosO (broad-side array)

|

Phase difference between the electric
fields due to successive array elements
at a large distance from the broadside

array
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w = Pd cos@ (rewritten) «— W =27x/N «— Ny /2=rx (firstnull)

(broad-side array) (recalled)

l

2% = ,Bd cos@ (first null of broadside array)
27
| -
2 2 A
Fﬂ — % dcos® —» cosO = N —— H=cos’ % (first null) (broadside array)

Since the nulls in the field pattern take place symmetrically on both sides of the principal
maximum, we can find the first null bandwidth FNBW as the separation between the first
nulls on both sides of the principal maxima as twice the angular separation between one of
these first nulls and the principal maximum, the latter taking place at 8 = z, as follows:

FNBW =2x (z —cos’' i) =7z —2cos i (broadside array)
2 Nd Nd

(expression for first null bandwidth FNBW of a broadside array)
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We can find the half power bandwidth HPBW of the broadside array putting

(AF) = L <« Value so assigned makes the square of the normalised quantity
! \/5 equal to %2 corresponding to half power bandwidth HPBW
sin ]\721//
— (AF), =
Ny
v 2
v = Pd cos@ (broad-side array)
sin YV —
2 1 ‘ Nl//_N(ﬂa’cose)_139
Ny 2 S22 '
2 27
<« -
o A

0 cos” 1.394 N7d cosf
Nrd

(half-power angular location)

—1.39 (broad-side array)

Using the same approach as followed to derive FNBW of the

-
broadside array
HPBW =2 x r_ cos | ﬂ =7 —2¢coSs | @ (broad-side array)
2 Nrd Nrd

(expression for half power bandwidth HPBW of a broadside array)
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O R

Let us design the linear array to make it the so-called end-fire array such that we
obtain a principal maximum corresponding to ¢ = 0 along the line or axis of the
array, that is, at either 8=0or 6= =

0=0 —
e
w = pdcosO+¢ or 7z <—— End-fire array condition
l st
(corresponding to principal maximum)
& =—pd or fd

l

w = fd cos@— pd = pd(cosf —1)
or

w = pdcosO+ fd = pd(cosf +1)

(end-fire array)
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w = pdcosl— pd = pd(cosf —1)

|

Corresponds to principal

maximum at 8= 0 at the axis of

the array of the end-fire array

Ny =N(fdcosO@— pd)= Npfd(cos@—1)=2rx

C

The solution is however inadmissible since cos#cannot be greater than 1.

Therefore, let us go for an alternative solution leading to

Ny /2= (firstnul) ——

|

2

p= A
ost9:1+i
Nd

T

admissible cos@less than 1.

(recalled)
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v = fd cos@— fd = pd(cos6 —1)

|

Corresponds to principal
maximum at ¢= 0 at the axis of
the array of the end-fire array

(recalled)

Ny /2 =—r insteadof Ny /2= (firstnull) ——

!
Ny =N(fdcosO— pd)= Npd(cos@—1)=-"2r

2z
A

<—ﬂ:

cosfd =1-— A (first null)  (end-fire array)
T Nd

The solution is now admissible since cosdcomes out to be less than 1.

Since the first nulls would occur on both sides of the principal maximum at 8= 0 of the
end-fire array, the first null bandwidth FNBW of the end-fire array is obtained as twice
the value of

FNBW (=20)=2cos " (1 — i)
Nd

111
(expression for first-null bandwidth FNBW of an end-fire array)



We can next find HPBW of the end-fire array following the same procedure as used in for
the broadside array. However, for a valid solution now, instead of Nyw/2 = 1.39, we have to
take Nw/2 = -1.39. that is, @ = -2X1.39/N as follows:

2x1.39
Ny/2=-139 — y=———
v v l N
w = fd cos@— pd = pd(cos@—1) (recalled)

(corresponding to principal maximum at 4= 0 at the
axis of the array of the end-fire array)

l

1. 392 . 2x1.39
cosf = l—m «— pd(cosf—1) =~ N (end-fire array)
1.394
=cos '(1—- —) (half-power angular location)
L. 1394 T -
HPBW =28 =2cos' (1-—5) (half-power points being located on both sides of the

Nmd =~ principal maximum at = 0 of the end-fire array)
(end-fire array)
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Phased array scanning for electronic steering of the antenna beam

We have seen how the excitation phase difference between successive elements & needs
to be different for the broadside ( £ = () and end-fire (¢ = 3 54) arrays that makes us obtain
a principal maximum in a direction normal to and along the axis of the array respectively.
Therefore, by controlling the progressive phase excitation & between the elements of the
array, we can steer the beam of power of an antenna electronically rather than
mechanically (the latter by physically rotating the antenna). This is the principle of the
phased-array scanning for electronic steering of the beam of antenna power (which can be
implemented by controlling the value of £ by adjusting the bias voltage of a hybrid-coupled
varactor or the current of the coil wrapping a ferrite phase shifter).

Yagi-Uda also known as ?&7&- M aw/ta? Yagi-Uda (fish-bone)
fish-bone antennais a antenna
highly directive antenna

l Reflector Directors l

Driven/active

- 4 N Consists of a driven
Tran§m|ts o element (active), a
rgcen{es a highly —0.25.%—0.31/—%—0.3 1 )—%—0.31/—%—0.3 11— reflector element
directive beam of _
power in the Q (passive) aqd a
direction of the axis number of dlrec_tor
of the array (as in an elements (passive)
end-fire array) of (thus all the |
parallel dipole 0.43), 0.432 0.431 0.431 elements .not.belng
elements 0.49;, active unlike in an

end-fire array)
0.514
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Some basic features

e The thickness of each array is significantly less than a wavelength.

e Only one of the elements is active or driven and the remaining elements are all non-excited,
passive or parasitic (unlike in conventional arrays like the end-fire array).

e One of the passive elements called the reflector is positioned along the array axis in the
direction opposite to the direction in which the power is to be directed.

¢ The passive elements positioned along the array axis in in the direction in which power is to
be directed are called the directors.

e Power is received by the driven element in the receiving mode and delivered to the load.
e The length of the driven element is slightly less than a half wavelength.

e The reflector element is slightly longer than the driven element.

e The director elements are shorter than the driven element.

A typical simple example of a six-element Yagi-Uda array: See the accompanying figure (on
the preceding slide) for the dimensions with respect to the lengths of the elements and the
distance between the elements.

The reported directivity of the this Yagi-Uda array is 7.54 (that is 8.77 dB) as compared to that
of a half-wave dipole 1.64 (thatis 2.15 dB).
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\ Expressions for energy and energy density in electrostatic field has been
derived in terms of the electric field and electric displacement (or electric flux
density).

\ Expressions for energy and energy density in magnetostatic field
analogous to the corresponding expression for energy density in
electrostatic field has been appreciated.

V Expression for energy stored in a capacitor in terms of the capacitance of
the capacitor and the charge of the capacitor or, alternatively, voltage across
it has been obtained using the expression for energy density in electric field.

\ With reference to a parallel-plate capacitor, the expression for energy
density stored in electric field in terms of the electric field and electric
displacement or electric flux density has been found to be valid.

\ With reference to a solenoid, the expression for energy density stored in
magnetic field in terms of the magnetic field and magnetic flux density has
been found to be valid.

\ Poynting vector (power density vector) has been introduced.

\ Poynting theorem has been derived involving instantaneous Poynting
vector.

115



\ Poynting theorem encapsulates the phenomenon of the storage, loss and
flow of electromagnetic energy.

\ Poynting theorem has been used to appreciate Joule’s circuit law for the
power loss in a wire of circular cross section and of finite resistance carrying a
direct current.

V Poynting theorem has been used to derive the expression for energy density
in electric field with reference to the problem of a parallel-plate capacitor of
circular cross section.

v Poynting theorem has been applied to the problem of an inductor in the form
of a solenoid of circular cross section and hence an expression for energy
density in magnetic field has been derived.

v Complex Poynting theorem gives the concept of time averaged
electromagnetic power flow.

\ Complex form of the Poynting theorem has been derived that can be used to
study time-averaged power flow through a bounded or an unbounded medium
and associated power loss due to the presence of a lossy conducting medium.
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v Complex Poynting vector has been identified as half the cross product of the
electric field vector and the complex conjugate of magnetic field vector.

\ Time averaged complex Poynting vector has been identified as the real part
of the complex Poynting vector.

\ Average power going out of a volume enclosure can be found as the outward
flux of the time averaged complex Poynting vector through the enclosure.

v Concept of reactive power flowing into a volume enclosure and its relevance
to average energies stored in electric and magnetic fields in the volume has
been developed.

\ Concepts of power flow developed finds extensive applications, for instance,
in hollow-pipe waveguides (used for the transmission of power in the
microwave frequency range) and antennas.

\ Expression for the power loss per unit area in a conductor in terms of the
surface resistance and surface current density of the conductor has been
deduced — an expression that has applications for instance in estimating the
attenuation of power in a hollow-pipe waveguide.

\ Concepts of power flow have been exemplified in their application to
conduction current antennas.
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v With the help of the fundamentals of Hertzian infinitesimal dipole, the antenna
concepts have been developed such as

¢ directive gain

¢ power gain

¢ radiation resistance

¢ effective aperture area and

¢ Friis transmission equation.

v Study on antennas has characterized not only the infinitesimal dipole but also
practical antennas such as

¢ finite-length dipole
¢ broad-side antenna array
¢ end-fire antenna array and

¢ Yagi-Uda antenna.
Leaders are moowmywl% go %ougﬂ Ww g
of% book /04/ moreTopics and more worked-oudl
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