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Development of understanding of general electromagnetic boundary conditions
and their interpretation for dielectric and conducting media forming the interfaces
as well as for time-independent and time-dependent situations

< Topios deallwith

Derivation of general boundary conditions in vector form at the interface between
two physical media

Surface charge density and surface current density and their interpretation in
conducting and dielectric media

Boundary conditions at dielectric-dielectric and conductor-dielectric interfaces
Reflection of electromagnetic waves from a good conductor

Reflection and refraction of electromagnetic waves at a dielectric-dielectric interface
Brewster’'s phenomenon

Total internal reflection

Refraction of current at the conductor-conductor interface

 Badgiomnd

Concepts of integral form of Maxwell’'s equations and relaxation time
developed in Chapter 5




Field quantities, for both steady (time-independent) and time-varying (time-dependent) situations,
will, in general, get modified when the medium is perturbed by the presence of another medium
because of the abrupt change in the medium properties at the interface (common boundary)
between the media. However, the field quantities would pass through a common set of
electromagnetic boundary conditions at the interface or common boundary between the media.

ffD .G dS = J'pdz- (recalled)
N T

(Maxwell’'s equation in integral form)

|

Applied to volume element dr
l medium (1) | ¢ ] Vintertace

medium (2)

A B

l—j 5 S l—j 5 VS = Area dS} D,
»a,dS +Dy.(=a,)dS = pdt dr— a parallelepiped volume element dzin the form of a pill box of
(h infinitesimal thickness dh and of infinitesimal area dS of each of its bottom

ow to be explained
and top faces, enclosing the point P where the boundary condition is sought

later)

a, =unit vector directed from region 1to?2

131 = electric displacement in region 1 dS =elementof areaoneachof

at the point P on the interface top andbottomfacesof volumeelement

f)z = electric displacement in region 2 dh=infinitesimal thicknessof volumeelement
dt =dSdh=volumeelement

at the point P on the interface
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—Bz.ﬁndS+l3].(—an )dS = pdr (recalled) «<—— It has been so obtained as mentioned before by
applying Maxwell's equation to the element of
volume enclosure dz. However, how it has been

(taking the electric displacements _ _

to be constant over the area SO obtalped has not been explained. Let us

elements) deduce it.

(ignoring the contribution of area ifﬁ'ﬁ ds = J-pdz' (Maxwell's equation in

elements on the side faces of 4 integral form)

volume element considering such > i

area elements to be insignificant Contribution to the left hand side by the area

taking negligible infinitesimal [ element dS on top face = D,.a, dS

thickness dh of the volume element L "

and hence prompting us to use the Contribution to the left hand side by the area ~

approximate sign of equality) — element dS on bottom face =(D,).(—a,)dS =—D,.a dS
We can remove the approximation (outward unit vector at the bottom face being
from the sign of equality by taking downward being opposite to that at the top face)

dh tending to zero in the limit:

_ _ Lt
—D,.a dS+D,.(—a,)dS = pdSdh
dh—0

a = Jo,
" dh—0 medium (2) /
medium (1) Cih P t

interface




(D,-Dy).a, = pdh Let us define the surface charge
dh—0
l density p, as
Lt J
Ps = P
N _ND\ = dh—0
(DZ _Dl)’an :ps
Wl (C/m?)
This is one of four general (since pis in C/m3 and dh is
electromagnetic boundary conditions. in m)

We obtained starting from

iff)-?zndS = Ipdr (Maxwell's equation in integral form) —— (D, —D,).d, = p,
S T

Similarly, following the same procedure as above, however now starting from another
Maxwell’'s equation, we obtain

{E.a@ — ifé’an dS =0 (Maxwell's equation in integral form) —— (B, —B,).d, =0
s -~

$ free magnetic charge being
absent or magnetic flux lines
being continuous

This is another general
electromagnetic boundary
condition out of the four.



Let us next consider a rectangle element A /1‘2 @)
of infinitesimal length d/, infinitesimal D C
thickness dh and area element ds = coo Interface
(dh)(dl) enclosing the point P on the L —>

interface between the medium 1 and
medium 2 (where the boundary condition A K \ B
is sought) such that the bottom and top 1 -
lengths of the rectangle lay in medium 1 - -
and medium 2 respectively.

dh

a, =unit vectae directedfrommedium1 to medium?2 |
n =unit vecto normalto theareaelementdsS

G iangenial = UNIL vecta tangental to theinterface

We take 7 such that it takes its direction as the direction of the linear motion
that a screw would have if it were rotated following along the sequence of

the closed line integral from A to B; B to C; C to D; and then back to A from
D in the left hand side of Maxwell’'s equation:

{Hdl =[] .idS {H-di:j(ﬁ@)ﬁds
/ S / S

(Maxwell's equation so chosen T _
to be expressed) J =J4 oD

(so defined for the sake of convenience)



Z:I .idS (recalled) A /1‘2 )
. D C

Applied to the left hand side

<«— following the sequence from A to
B; B to C; C to D; and then back '
toAfromD ALK \Q B

L
v dl 1

- -

dl + H ( tangentlal) dl otal n dS ) ]

—_——,
Il

P ‘"Iangem.lall Interface

dh

H,.d

tangen‘ual

. \ (ignoring the contribution of length elements on the side faces
Subscripts 1 and 2 of area element considering such length elements to be
insignificant taking negligible infinitesimal thickness dh of the
area element and hence prompting us to use the approximate
v sign of equality)

(H,— H,).Gpgenia AL = T - dS  «— dS = (dh)(dl)

|

— —

refer to regions 1 and
2 respectively.

(H,—H,). c_itangentlal_ el The unit vectors satisfy the relation of cross product:
l Zin X ﬁ = C_itangential
(Hl_Hz)-Einxﬁ total * .ndh



L.

r —

— v A~ - 2
HZ)'anxn:Jtotal'ndh D C ( )
\ P :Iangenutal Interface

A K B

P \ R 1)

dl Ill

3 -t -

dh

|

I
I
o TN
[l [l
Q)
|
T
[\S)

4—
@Y

[l
ST

il(H —H,)xad,—Jmdh =0  «———  G=(H -H,)xa, —J,.dhsay

o The orientation of the area element ABCD is arbitrary. That
n.G=0 makes the value of # and hence that of cos @ arbitrary

l —

ﬁ-éz(l)(G)cosé?zGcosé’;O — G=0

0 1is theangle betweenn and G



T \d ~ T ~ -~ 0D
(HI_HZ)Xan = totaldh — Jtotal :J+E
l - We can remove the approximation from the sign of
(f] _H Yxa, = qdh+a—Ddh | equality by taking dh tending to zero in the limit (that
: g " ot ensures nil contribution to the evaluation in the
l surface integral of Maxwell’s equation):
L Lt - oD
(H,—H,)xa, = h+ —dh <
dh—0 dh—0 ot ‘

L Lt >
l L———-g Jdh Lt ap .,

(H,-H,)xa, =(J;)+(0)
!

(FII _FIZ)Xan :JS

~dh—0 dh—0 ot

f f

4 The first term takes a The second term becomes
finite value in the limit nil in the limit dh — 0

as J — oo with dh —> 0 as D is finite and hence
oD/ &t is finite



—

xd,=J; +—— AxB=—BxA=(B)x(-A) +— j:*_ﬁz}

Zin X(ﬁZ _ﬁl) :js

This is yet another general electromagnetic boundary condition out of the four.

Let us recall the following: Following Let us recall the following:
. o8B the same {H-dfzj j+a—D -d, dS
§E dl =— 5 a, dS approach’ ! S 5t
: g the right (Maxwell’s equation in integral form)
(Maxwell's equation in integral form) ¥ Eand side ' A
ecomes ni . :
Appling to the left hand side  n the limit — ?2‘3‘3'&325‘1&21553522 rom Ao
<— following the sequence from Ato Since B: B to C: C to D: and then back
B; Bto C; C to D; and then back ~ dh — 0as o A from D
| toAfromD B is finite Y L
oB a x(H,—H,))= Jdh
i x(E,—E,)= _2 and hence dh—0
" dh —0 » l
| oL a 0B / ot
is finite. a,x(H,—H,)=J
a, x(E,—E)=0

This is the fourth of four general electromagnetic boundary conditions. 10



Maxwell’s equation in
integral form

v

Electromagnetic
boundary condition

{D-d,ds=|pdr
S T

v

(DZ _Dl)c_in :ps

v

v

v

11



Electromagnetic
boundary condition

Meaning

v

At a point on the
interface between
two media

— —

(DZ _Dl)c_in :ps

v

normal component of electric
displacement is
discontinuous, the amount of
discontinuity being equal to
the surface charge density

v

normal component of
magnetic flux density is
continuous

v

tangential component of
magnetic field is
discontinuous, the amount of
discontinuity being equal to
the surface current density

v

tangential component of
electric field is continuous

12



We can interpret general electromagnetic boundary conditions for dielectric-dielectric
interface and conductor-dielectric/free-space interface. For this purpose, it is worth reviewing
some of the basic behaviours of conductor and dielectric media with regard to relaxation
time, existence of a free charge in the bulk of the media, surface resistance, surface current
density, and electric field and magnetic in the media.

Dielectric

Conductor

Relaxation time of is very large

Relaxation time is very small

A charge can stay longer inside
the bulk of a dielectric without
appearing at its surface and a
finite volume charge density
can be established inside the
bulk resulting in a zero surface
charge density at the surface of
a dielectric for both time-
independent and time-
dependent situations.

A charge inside the bulk of a good
conductor decays very fast to
appear with a large volume charge
density concentrated over a thin
layer on the surface of the
conductor, resulting in a finite
surface charge density on the
conductor surface for both time-
independent and time-dependent
situations.

Continued

13



In continuation

Dielectric

Conductor

The electric field and the
electric displacement can be
established inside a dielectric
for both time-independent and
time-dependent situations.

The bulk of a conductor cannot be
electrically charged, resulting in no
electric field or electric
displacement inside the conductor
for both time-independent and
time-dependent situations.

A finite magnetic field or
magnetic flux density can be
established inside a dielectric
independently of electric field,
for both time-independent and
time-dependent situations.

A finite magnetic field or magnetic
flux density can be established
inside a conductor independent of
electric field for time-independent
situations. However, for time-
dependent situations, the magnetic
field or magnetic flux density is nil
inside a conductor since it is
coupled to the electric field which
is nil inside the conductor for such

situations.

Continued

14



In continuation

Dielectric Conductor
No current flows through a A finite current can be made to flow
dielectric and therefore the through the bulk of a conductor for
surface current density time-independent situations,
becomes zero at the dielectric resulting in zero surface current
surface for both time- density. However, for time-
independent and time- dependent situations a large
dependent situations. current density can be
concentrated over a thin layer on
the conductor surface resulting in a
finite surface current density.

As mentioned earlier, the above behaviours of a dielectric and a conductor
help in the interpretation of general electromagnetic boundary conditions for
dielectric-dielectric interface and conductor-dielectric/free-space to be taken
up next in our study, which is of practical relevance.



lomoény_ condilions A

dicleic-diclecAric soAe
Lt ]
p#0 —> p = pdh=0 Subscripts 1 and
dh— 0

- ~ 2 refer to

,#0,D,#0 . quantities in
L - region1 and 2
H,#0,B,+#0 respectively

J

(mentioned earlier in a Table under the
behaviour of a dielectric)

(D,—D,)d, = pq (D,—D,)d, =0
(B,—B,)d, =0 ___ ., (B,-B)a,=0
a x(H,—H)=J, a x(H,—H)=0
a,x(E,—E)=0 a,x(E,—E)=0

(general electromagnetic

boundary conditions) (electromagnetic boundary

conditions at dielectric-
dielectric interface)

&€= 523;“ Ky

(5:‘9131‘1:1“0)
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Let us illustrate the application of the boundary conditions at a dielectric-dielectric
interface by taking up the problem of finding the electric displacements in region 1 (x>0)
containing a dielectric of relative permittivity £, = 3 and region 2 (x<0) containing another
dielectric of relative &, = 5, the two regions forming an interface at x = 0 if the electric field

inregion 2 is given as: £, =404_+ 60a, —80a_ V/m.

E, =40a, +60d, —80a_ V/m.
l (given) X<0 " Dielectric
(2) (gr2 :5)
D, =¢&,E, =&,6,,E, =5¢,E, y =,
=5¢,x(40a, +60a, —48a_.) V/m Interface
i ) x>0 Dielectric
D, =(200a, +300d, —400d. ), C/m’ (6.=3)
Let us recall the boundary condition
(D,—D,)d, =0 (recalled) ~ -
a, =-da,
[(DZX _Dlx)ax +(D2y _Dly)c_iy +(D22 _Dlz)c_iz]'[_ax] :O
—(D,.-D,)=0 D, =(200a, +300a, —400a. )&, C/m (recalled)

|

D,. =D, =200g,C/m’

17



a, ><(E‘2 _El) =(0 (boundary condition recalled)

¥
—a . x[(E,,—E )a,+(E,, —E)a,+(E, —E )a,)]=0
Y
—(E,,—E,)d_+(E,.—E,)d,=0
Y
E,=E, and E_=E, E, =40a, +60d, —80a_ V/m. (given)

J T \
E,,=60V/m and E_ =-80V/m E, =60V/im and E, ——80V/m

V

D, =& E,, =&,E,, =(&)B)E,, =(&,)(3)(60) =180¢, C/m’

D.=¢&E,_=¢,&.E. =(5)R)E,. =(&,)3)(-80) = 2405, C/m* <— E,, =—80 V/m (recalled)

v
D =D,d +D,d,—D.d)s, <— D, =D, =200 C/m* (recalled)
¥ T~ D,, =180¢, C/m’ (recalled)
D, =(200a, +180d, —240d_ )&, C/m’ D, =(200a, +300a, —400a_ )&, C/m’ 18

(recalled)



Take up another similar problem as an exercise to illustrate the application of boundary
conditions at a dielectric-dielectric interface in which to find the electric field in region

2 (y>0) containing a dielectric of relative permittivity ¢, separated at the interface (y = 0)
from region 1 (y<0) containing another dielectric of relative permittivity ¢, if the

electric field in region 1 is given as: E =la +m51y —na..

The approach to getting the solution to the problem has already been elaborated in the
preceding illustration. Some of the steps are provided as a hint as follows.

D =gk =¢¢,(la,+ma,+na,) «— E =ld +md, —na, (e!ectric field in region 1)
\l/ (given)
D, =¢,6.,l (D, —D,).d, =0 (boundary condition) <— a,=a,
D,, =¢&,5,m i
D _=¢g&.n — - - - - ~\7 =
1z = €0%n [D,a.+D,a,+D,.a —(D.a +D,a,+D.a.)]-a, =0
- _ _ 5 (given) \L \ a.- *y =0
= — iven
E =la,+ma, —na, (9ve D -D -0 oL
2y ly a -a =1¢
\l/ v %y
i a.-a,=0]
Ey,=m — D, =D, =¢&E,, =¢&¢, L, =&¢,m

19



a,=a,

a x(E,—E)=0 < ~ ~ -
E =la,+ma,—na,

|

a,x[(E,.a,+E, a, +E,d)—(ld,+ma,+nd.)]=0

2y“*y 2z7%z

_(E2x _Z)Eiz +(E22 _n)c_ix = O

|

EZx_l:O

E,.—n=0 D,, = ¢&,&,,m (recalled)

’ |

E, =1 D D

2x 2 2
E = T
2z — n (92 80€r2 gr2

e_

—

E =la, +mad,—na,

20



In the next illustration, take a medium divided in region 1 of relative permeability 60
(iron) and region 2 (free space) across the interface (z = 0) and hence find the magnetic
flux density in region 2 if the magnetic flux in region 1 is 6a_ +12Zzy T.

(EZ _El)ﬁn = (0 (boundary Subscripts 1 and 2 refer to quantities in region1 and 2 respectively
@dition) '\
i —a 131:6axj—12ay "{(gweni Region 1: y <0
BZ =B2xax+Bzyay+BzzaZ Reglonzyzo
[(B,,a,+B,,a,+B,.a.)—(6a,+12a )]a. =0 = =
o = H,
i/ an:az\ = N 7 « ézzﬂzlj[z
BZZ:O anX(HZ_Hl):O

(boundary condition)

2y~y 2z7%z

Hy H

i 21

B (BZszx+B i, +B,.ad 6sz+12c7yj
a_ x -~




BZx = 6&
Hy
B, = 12% » ——> B,=B,d +B,d,+B,.ad.
1
B, =0 (recalled) l
1 =60 (iron) | B,=62G +12725,
(given) H H

u., =1 (freespace)

! !
Ly = Uyl :6()#0} B2 =O.1c7x+1.2ﬁyT
Hy = HoHyr = Hy

22



- Lt -
Jg = Jdh
dh -0

E, =0,D,=0

1
H, #0, B, # 0 (for time - independen t situations)
H, = B, =0 (for time - dependent situations)

ey """""1" oo e T D
o *;ﬁt;ﬁsq,*gggggggggg

&=8&y U= Hy

777

Y

A ),

;]

L T L
_ o N 0
(mentioned earlier in a Table under the e
e e S
havi f R
behaviour of a conductor) o o S S A S S o,
| P gy gttt e b e e
(D, -Dy)a, = ps | &€ =&y, L= H
(B,—B))a, = - D,.a, = ps D,.a, = p;
a,x(H,~H)=1J, (B,-B,)d, =0 B,d, =0
a,x(&,~E)=0 ﬁnX(ﬁz—Hl)=0 67nXIj]z:js
(general electromagnetic axEk,=0 a, x Ez =0

boundary conditions)

(electromagnetic boundary conditions
for time-independent situations)

(electromagnetic boundary conditions
for time-dependent situations)



In order to illustrate electromagnetic boundary condition at conductor-dielectric
interface, let us take up the problem of finding the surface charge density developed
on the surface of a good conductor placed in free space where the electric field is
given as: 4a_—3a_V/m. =

E,=Ead, +— a xE, =0 (boundary condition) (recalled)

n

- l - (remembering the nomenclature that the subscript 2
D, =¢,k,a, refers to region 2, here free-space region)
132 'c_i,, = P, (electromagnetic boundary condition recalled) 2) ~ Dﬁ =&k,
\L (free space) £,
a,
fobad,a, =P E _ 45 _3G V/m (given) T

! l

(conductor)
p. =6, E, <«— E, =4 +3* =16+9=125=5 V/m
i ~

p. =5g,C/m’ E,=FE=44_—3d, V/m

24



In another illustration let us find the surface charge density developed on the surface of a
conducting plate of a parallel-plate capacitor in terms of the potential difference between
the plates and hence derive an expression for the capacitance of the capacitor in terms of
the dimensions and permittivity of the dielectric filling the region between the plates of the
capacitor.

The problem enjoys rectangular symmetry, and for large plates perpendicular to z, we may treat the
problem as one-dimensional considering the potential to vary only along z:

(8/8x=08/dy =0;0/6z #0).

Let the plates be located at z = 0 and z = d respectively and let the potential of the plate at z= 0 be
raised to potential V = V|, with respect to the potential V = 0 of the other plate at z = d.

E = &az (electric field in the region between the plates)
l d (d = distance between plates)
D= 555 (electric displacement in the region between the plates)
d V4
B =Dd=p

=~ -
D, -a, = p, (electromagnetic boundary condition recalled)

p.=D-a = 55 a -d = & (charge density on the plate)
’ d d

25



ey,
Charge on theplate = p 4 = %VO A4 «— p,=—" (charge density on the plate) (recalled)

d
N
Area of theplate = 4
v, 4
C- Chargeontheplate p A4 5 & &4
Vs Vs Ve d

(expression for the capacitance of a parallel-plate capacitor)

We can appreciate from the above expression for capacitance that the practical unit of permittivity ¢ is
F/m since the units of capacitance C, area A and distance d between plates are F, m2and m
respectively.

In an illustration similar to the above on finding the capacitance of a parallel-plate
capacitor, let us now find the surface charge density developed on the conducting surface
of a long cylindrical capacitor comprising two coaxial long conducting cylinders in terms
of the potential difference between the conducting cylinders and hence derive an
expression for the capacitance per unit length of the capacitor in terms of the inner and
outer radii of the capacitor and the permittivity of the dielectric filling the region between
the conducting cylinders of the capacitor. The problem is similar to finding the capacitance
per unit length of a coaxial cable.

The problem enjoys cylindrical symmetry, and for long coaxial conductors we may treat the
problem as one-dimensional, considering the potential to vary only along r:

0/00=0/0z=0;0/0r#0

26



VIV = 12(;/8_1/) =0 (Laplace’s equation holding good in the region between the
ror  or inner and outer conductors)

le— In view of 6/00=0/0z=0;0/0r #0

Integrating

d( dV
o,y — 2T TN W G
or \_ or dr\ dr dr dr r
C, and C, are integration constants l Integrating
— Vy=Cha+C, «—— V=Vjatr=a <—— V=Clhr+C,
(potential at inner conductor)
S V=0atr=>b
C = Vo
- O = Cl ln b + Cz 1 a
lnb \
On solving v lnz
C,=—- Inb b
n< V= a Vo
b In—

27



12
. ov . dv . In—-
E=-VV=-——d,=——ad, <— y=—by (ecaled)

mné
l b

. 1. L
E=V0—ar —> D=g¢ :gVOlc_ir
]_n é r 1n é r
a l a
~ Ve 1. L
D=¢ 54 (electric displacement at the surface of
In= % theinner conductor r = a)
a
p=D-d=D-d=c¢ Vob lgl 4 =c Vob 1 A =2mal = Area over thelength /
In=¢ In=¢ of theinner conductor
4 \ a /
Chargeover thelength / of theinner conductor=p 4= ¢ Vob lA =& Vob l27zal
a a
Vo In . In p
877
n’a
A I 1 27l
c=P2_ 4 2ral = ¢——2mal = =—- (Capacitance over the length /)
Vo Vo In ba In b
a a
Capacitance per unit length = Zﬁ
In b 28
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In yet another illustration let us calculate the peak surface current density developed at the
surface of a conducting medium forming an interface with a dielectric medium of relative
permittivity 4 if the electric field in the dielectric medium at the conducting surface is given by

E =607sin fzsin ot d@_ V/m.

—

VxE=-u, aaﬂ (Maxwell’'s equation recalled)

4
i, d, a
0 9 o B g g g (g
ax oy oz| oTg MTHoTg T Ty T Ty Ty Ty
E. 0 0

.

y-component

OE OH 29




l (given)

OH, 607 cosfzsin wt

ot Ky
<+<— |ntegrating

6073 cosfzsinwt ¢, .
H,=- 7 cosfpz I(sma)t)dt _7
My Uy =47 =x10"" Henry/metre
60 — ¢ b
__ 7 cos fiz —Ccosw + constant &y = n x107" Farad / metre
Hy @
g, =4 (given)
Choosing the boundary phase such that
H, =0 at of = 712 that makes constant = 0 l
H, = 607 cos ffz coswt oy, oy | Hy | Hy
) B oyue €& 4s,

g 1 1
l :—\/E:—(12O)=607ZQ
2\ e, 2

607 cos ffzcosmt
H =
g 607

=cosfzcoswrt

= —ply — E, =60zsinfzsinot <—— E=60zsin fsinord, V/m.

30



H, =cosfEzcosax (recalled)

d,xH,=J (boundary condition) i ——-a

< X

dielectric ¢, =4

conductor

«— X
Q
X
!
I
I
Q

<—

J,=cosfcosarta,

\Le—Z:O

—

Jg =cosara, (surface current density at conductor-dielectric interface at z = 0)

Jy=d, ——> Peak surface current density magnitude =1 A/m”

31



General electromagnetic boundary conditions

- Lt
(D,=D)a,=py == A= PN
(B,-B,).d, =0
~ = ~ = Lt -
a,x(H,—-H)=J, *— J,= Jdh
(=t S dh—>0

a x(E,—E)=0

- .

Dielectric (1)-dielectric (2) interface Conductor (1)-dielectric (2) interface

l S\

For both time-dependent and time-

independent situations :i‘t)l;;ri‘;i'si”depende”t :i?l:;figi-sdependent
(D,-D,)d, =0 D,.d, = pq D,.d, = ps
(B,—B))a, =0 (B,—B)).d, =0 B,d,=0
a x(H,—H)=0 a x(H,—H)=0 a xH,=J
X(E,—E)=0 a xE, =0 xE, =0

32



;@f&&fiow fwm & ;ooal conduntor

Free space

Lyp = Tre, Lyp — 2ty

Let a uniform plane electromagnetic wave (d/ ox = 6/0y=0)

propagating in free space along positive z direction be incident on a conducting surface and
reflected from the surface in the negative z direction. Field quantities in incident wave will vary
as exp j(ot—pz) and those in reflected wave as exp j(ot+/2).

E M = £ free- spaceintrinsic impedance
Hx =1, (forincident forwardwave) e €o
Yy
EX
T =17, (forreflected backwardwave)
Yy

(as explained in Chapter 6) 33



—

E, =Eya, Subscript 0 represents the amplitude.

E, +E, =0 « <—— Subscripts i and r refer to incident and
~_ 7 _ reflected components.
EO}" = E()rax
Free space
Tanggntial gomponent of.electric Eup =~ Ly — 200y
field is continuous at the interface \ /
(boundary condition) e (L, > X

\L {Eol' =Eya,

EOiax_i_E C_i :0 E* =E C_i
or

0
e 0rx

} (recalled)

v

fH%@za%=Eﬁwﬂ?—&ﬁﬁﬂwwﬂ@+&ﬁx

E| = E, exp j(ot - fo)d, — By exp j(ot + B,

QI €<—

EOr

A o . .
E, = E, (say) [electric field in free space at z (perpendicular distance from
the interface z = 0)]

J’ exp(£jfz)
E‘ = E[exp j(at— fz)—exp j(wxt + fz)]a, v~ =cosfzt jsinfz

V

=—-2jE,sin fzexp(jort )a,

z

E
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Similarly,

H| =Hyexp j(at - fiz)+ H,, exp j(ext + fz)

[magnetic field in free space at z (perpendicular distance

from the interface z = 0)]

HOi - HOiay
\ HOr :HOray

(magnetic field directions along positive y conforming to
incident and reflected waves propagating in positive and
negative z directions respectively) (see Chapter 6)

ﬁ‘z =Hya,exp j(ot— fz)+ H,.a,exp j(ot+ fz)
=[H,; exp j(ot - fz) + H,, exp j(ot + fz)]a,

l AN

A| =Z0[exp(- o)+ exp(p)ljerd,
=
T
l exp(£jfz)
=cosfztjsmpfz
A =25 -

cosfzexp(jax) a, ]

z

0

E .

Hx =17, (forincident forwardwave)
Y

Ex

T2 —17, (forreflected backwardwave)
Y

E,a, =—FEa recalled)
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77 :2E0
: 0
[magnetic field in free space at z (perpendicular distance from the interface z = 0)]
- exp(—jm/2)=cos(m/2)— jsm(z/2)=0—-(j)A)=—J
E| =—2JE, sin prexp(jar)a, & SPC/7I2)=cos@/2)=jsmx/2)=0=()H1)=~/

l [electric field in free space at z (perpendicular distance from the interface z = 0)]

E‘ =2FE,sinfzexp j(ext—jr/2)a, 2E

N

Electric field at z lags behind magnetic field in phase by /2

Absence of the factor exp j(awt—fz) or exp j(wt+pz) in electric and magnetic fields at z
indicates absence of forward or backward wave and presence of standing wave
when incident and reflected waves combine at z.

Presence of the factor singz in electric field amplitude and that of cosz in magnetic
field amplitude also indicate that the maxima of electric field coincide with the minima
of magnetic field in the standing-wave pattern and vice versa.
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Parallel polarisation:

Electric field is parallel to the plane of incidence (that contains
incident ray and normal to the medium interface) while magnetic

field is perpendicular to this plane

Tangential electric and
magnetic field components

Dielectric-Dielectric (#2)

Interface

Negative sign in the definition of

reflection coefficient accounts for the
opposite directions of incidentand
reflected electric field components. 1

FL’E/

E.cos@ —E cosO =E, cosl,<—
both are continuous at
On H+H =H, «<—— dielectric-dielectric
solving interface (boundary
/ 1, = Hy condition.

£ E K €
1 Th n, = Hy

52

> _E, _n,cos6,—mcos6 \/;100892 — /&, cosb,
// -

(reflection coefficient for parallel polarisation)

;M cosf +n,cos0, g cosb, + /&, cosb

, -
N "
T = E, 217, cos6, _ 2\/;100891 Jer e
" E 1ncos0 +n,cosb, \/Zlcosé?z +./&, cosb, Jer+z2
(transmission coefficient for parallel polarisation) -1



Brewster’s law: Condition forI', =0

Ly ==

E.  n,cos0,—n,cosb, \/Zlcosé?z —J& cosb,

0 1

1

!

\ & cosb, =./g, cosh,

E, mcosb +mn,cosl, /g cosl, +,/g, cosh,

(', =0)

i

-
01
Ja -
On multiplication with j/ Y e
l J& sinf, = .[g, sin@, (Snell’s law) 1
. . sin & £ ,
J& &, sinB cosh, = /&, ./e, sin b, cosb, —L = |2 (Snell's law)
sin 6, &
\ i sing, |,
i =25i cosé £
2sin G, cosf, =2sin b, coso, sing, [a) / 4 1
. E . & \
$in26 = sin 26), sin(-—6)) tang = |2
€
. Angle of incidence corresponding
20, =m =206, to nil refection coefficient for — s 6=06,= tan”! &
parallel polarisation(I', = 0) &
/4
0, = 5" 6, (Brewster’s angle) 38



Calculate Brewster’s angle for glass of refractive index of 1.5.

n. = L\ Vo1 = \/17
& n 1 ’
2 _0 , Voni 5 Fofr |
g n ( 1
n, = —C vph2 —
oy \ Ho&s
ph,2 ) 7
(refractive indices (phase velocities of
of media 1 and 2) media 1 and 2)
€
0, = tan 11/—2 (recalled)
& Incidence from free-space medium
to glass
(Brewster’s angle) /
an )
0, = tan n_? <—— n, =1.5(given); n, =1 (free space)

0, =tan'1.5=56.3"



Perpendicular polarization:

Electric field is perpendicular to the plane of incidence
(that contains incident ray and normal to the medium
interface) while magnetic field is parallel to this plane.

E +E =E,

é_
H cos@ — H, cosO = H, cos0,

|

E, E E
—cosf, ——~cosb, =—+cosb,
Y h T
E—E - cosb, m g

cosé, 1,

E. n,cos0 —n cosb,

[ ===

Tangential electric and
magnetic field components
both are continuous at
dielectric-dielectric
interface (boundary

condition.

Y7,

n = —=
81

é_

7

= —=
&

e
B \/Zlcosé?l — 4/ &, cos0b,

1

21, cosb,

E.  n,cos6, +n,cosb,

\ & cosb, +./&, cosb,

2\/;1 coso,

T Et
L= 5 =
E m COSH1 +1, COS@2

\J& cosO, + /&, cosb,

Dielectric-Dielectric | E;

Interface |

I (&2)

Positive sign in the definition of
reflection coefficient accounts for the
same directions of incident and
reflected electric field components
unlike in parallel polarisation.

(reflection coefficient for
perpendicular polarisation)

(transmission coefficient for

perpendicular polarisation) 40



Total internal reflection:

Irrespective of whether the polarisation of an electromagnetic wave is parallel or
perpendicular, the wave incident from a denser medium to a rarer medium
undergoes reflection at the interface between these two media with a magnitude
of the reflection coefficient equal to unity when the angle of incidence is greater
than a value called the ‘critical angle’. The phenomenon is called total internal

reflection.

0,=m/2
v
J& sinf = [g, sin@, (Snell'slaw) ——> [g sin@ =./¢ sinf, =g, sin(zx/2) = /e,

. . &
sinf, =sinf, = |-= 4
‘91 Denser medium
& 0,10
— ain ] 2
0.=sn |—=
€ 6,

(critical angle)

Rarer medium

Let us next study the behaviour of the reflection coefficient
for angle of incidence greater than the critical angle.




, I /_ <« \/>sm<9 g, smé.
cos@zz\/l—isinzel& cosf, = l—sngz& sin6, = 52 sin 6, 2 2

& (Snell’s law)
: Fo
sin® g, ==%  <— 0. =sin"' &
& &
(Critical angle)
\

2 2
sin” 6, sin” 6,
cosé 1- L=11 — 4
& sin” 6,
€ T~ For angle of incidence 6, greater than
l the critical angle 6, , sin 6, > sin 6,

cos @, becomes imaginary for 6, > 0,
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N — , cosd, becomes
r - & cosb, —./&, cosb, ¢, cosO, = jB cost,
\J€ cosb, +./&, cosb, imaginary for 6, > 6.

hereB is real
=~ w (
recalled)
(reflection coefficient for parallel A4 =,/&, cosf, whereA 1s real
polarisation) C= \/Zlcosé?l

i Similarly / JP= \/;2 cost,
/ N

B \/Zlcosﬁz —\/&,c086,  jB—A4

B \/;lcosé?l —yé& cos6, C-jD

/. . = =
\/‘?ICOS(%Jr & cos6, jB+4 - \/57100391+ g,cos6, C+jD
_— _ D

=2 A‘=1 6,>0) \HC . ‘=1 6,>0)
jB+ A4 C+jD

Thus, there is total internal reflection for rays incident from the rarer to denser medium, irrespective of
whether the polarisation is parallel or perpendicular.
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waw of correrd A
conduor-conductor mfm{a@a

Let us begin the study with the appreciation of the circuit law of parallel resistances with the
help of the boundary condition that the tangential component of electric field is continuous
at the interface between two media.

For this purpose, the said boundary condition is applied at the interface between two
rectangular conducting slabs in contact of the same length /, conductivities o, and o, and
cross-sectional areas A, and A, respectively.

Current densities J; and J, are related to electric

/ fields E, and E, in the slabs through Ohm'’s law while
the current / fed into the slabs in contact is divided in

J, =0,E, J, =0,E, currents /, and /, through the slabs.
1 -
] (@1) Area 4;
—_—
J J L L.
E = 1 E, = z2
0, 0, I—> Area A
5 (92)
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E, and E,, which are tangential at the interface, are continuous at the interface:

E, (boundary condition)

i

Ji_J
O, O,
i I=1+1,
L, 1,
4o, 4,0,

Multiplying by /

/ /
[ —=1 ——
lApl 2@% I=1+1,
Rl L
- o, 4,
Rl L
]1R1:[2R2 o2 5

Y~

(1) Area Ay

Y

Area Ay

(02)

45



Il _ R2
IR =I1,R, —> TR
2 1 R
I 1
\l/ 1
Il R2 _ RZ
I,+1, R, +R R +R,
I, R
l 1N Cn
I=1I+1
iz R, 1 T4,
I R +R,
¢ Multiplying
;o IR =1—"2 =R
'"" R +R, | R+R
R1R2

R . =
equivalent
R +R,

equivalent 1

(Law of parallel resistances)

equivalent

[=1+1,
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Let us now consider dc current passing through two

conductors of different conductivities o, and o, and a
see how the current refracts through the conductors . "4
with a definite relation between the angles of A 5N

incidence and refraction 6, and &, respectively in }
terms of the conductivities o, and o, .

Apply to a pill-box

IJ.EindS =0 Fz (rectangular) volume /4
S element of

infinitesimal thickness
at the interface

INE2
Area=dS

(under dc conditions)

l <« lgnoring side contribution to the surface integral in view of
infinitesimal thickness of the volume element

Jnl - Jn2
Subscript n refers to
oL, =0k, the normal component

o,E,cosb, =0,E, coso,

Etl = Et2
\’

E sm6f =E,smb,

<— Tangential component
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—

a
o,E,cosb, =0,E, cos, (recalled) A
N 9 ()

E sn@, = E,sin 0, (recalled)
By division

\

I
I
E F NG @)
: : INE
E sing = E,sino, Area=dS :‘%
o,E,cosl, o,E,cosb, | 2

(l*)2 — Dl)ﬁn = p, (boundarycondition)

J/ D,=D,=ps —E(E,—E,;)=ps
tanf, o, /
tang, o, y ;
€y (_nZ o _nl) = Ps
(refraction of dc current o, O,
through conductors) 1/
1 1 (i =1 2) (relaxation time)
E(———), = ps O, :
GZ\L ()'1
(Tz _Tl)']n = Py

(surface charge density
developed at the interface)
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v Electric and magnetic field quantities get modified due to an abrupt change of
the medium properties at the interface between two media such that these
quantities satisfy a set of electromagnetic boundary conditions at a point on the
interface between the media.

\ General electromagnetic boundary conditions at a point on the interface
between two media have been deduced in vector form with the help of Maxwell’'s
equations in integral form in terms of the field quantities and a unit vector
directed from one medium to another.

v\ Surface charge density is defined as the product of the volume charge density
and the infinitesimal thickness over which the charge is spread at the interface,

in the limit of the infinitesimal thickness tending to zero. This definition emerges
in course of the deduction of general electromagnetic boundary conditions.

v\ Surface current density is defined as the product of the current density and the
infinitesimal thickness at the interface over which the current density is
significant, in the limit of the infinitesimal thickness tending to zero. This definition
emerges in course of the deduction of general electromagnetic boundary
conditions.



\ General boundary conditions can be interpreted for dielectric-dielectric and
conductor-dielectric interfaces on the following findings.

¢ Relaxation time of a dielectric being quite large, the electric charge can
stay longer inside the bulk of a dielectric and the bulk of a dielectric can be
electrically charged with a finite volume charge density that makes the surface
charge density nil at the dielectric surface which can be appreciated from the
definition of surface charge density. The finding is valid for both time-
independent and time-dependent situations.

¢ Relaxation time of a good conductor being quite small, the charge
inside the bulk of a good conductor decays very fast to appear with quite a
large volume charge density at the conductor surface to get concentrated over
a layer of infinitesimal thickness, which in turn renders a finite value of surface
charge density according to its definition. The finding is valid for both time-
independent and time-dependent situations.

¢ Electric field or electric displacement is absent in a good conductor
since the bulk of the conductor cannot be electrically charged. The finding is
valid for both time-independent and time-dependent situations.

¢ Finite magnetic field or magnetic flux density can be established inside
a dielectric independently of electric field, for both time-independent and time-
dependent situations.
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0 Magnetic field and the magnetic flux density each become zero
inside a conductor for time-dependent situations since for such situations the
magnetic field is coupled to the electric field which is absent in a conductor.

¢ Finite magnetic field or magnetic flux density can be established
independently of an electric field in a conductor for time-independent
situations.

0 Surface current density at a dielectric surface is nil since a dielectric
supposedly perfect does not conduct current. The finding is valid for both
time-independent and time-dependent situations.

0 Surface current density at a conductor surface is nil for time-
independent situations according to the definition of surface density, since a
finite current can be made to flow through the bulk of the conductor for such
situations.

0 Finite surface current density according to its definition can be
established at the surface of a good conductor for time-dependent situations
since quite a large current density can be concentrated over a layer of
infinitesimal thickness at the surface of the conductor.

v Understanding of the phenomenon of formation of a standing wave when a
uniform plane electromagnetic wave is incident from the free-space region
on the surface of a conducting medium has been developed with the help of
the relevant electromagnetic boundary condition.
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\ Reflection and refraction of electromagnetic waves at a dielectric-dielectric
interface have been studied with the help of the relevant electromagnetic
boundary conditions for parallel and perpendicular polarisations.

\ Brewster’s phenomenon for parallel polarisation can be understood with the
help of the relevant electromagnetic boundary conditions.

\ Brewster’s angle of incidence that corresponds to no reflection at a dielectric-
dielectric interface has been deduced for parallel polarisation.

\Total internal reflection at a dielectric-dielectric interface for the angle of
incidence greater than the critical angle has been understood for both parallel
and perpendicular polarisations.

v Circuit law of parallel resistances can be appreciated from the electromagnetic
boundary condition that the tangential component of electric field is continuous at
the interface between two media.

v Boundary conditions at the interface between two conducting media yield the
law of refraction of current for time-independent situations.

Keaders arve enco ed 7o g0 Throuah et 7
wiag 4 uZ
ofﬁa booke /o»b mow%/n'w and more worked-ouil
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