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Study of propagation of uniform plane electromagnetic waves through
unbounded media such as free-space and conducting media

T Tapics deali with >

Representation of a wave

Establishment of wave equations in electric and magnetic fields
Wave propagation through an unbounded free-space medium
Wave propagation through a resistive medium

Skin depth, surface resistance and ac resistance

Wave propagation through sea water and choice of operating
frequency vis-a-vis attenuation

Wave propagation through a medium of charge particles
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Basic concepts of time-varying fields developed in Chapter 5
including Maxwell’'s equations




?Mafion of A Mﬂ"?‘ avsocrifed wilh a wave

A quantity that varies periodically with space and time is said to be associated with a
wave. Let us see how a mathematical function can represent a propagating wave.

Let us examine the function

z ,
f+ (t,z) = f+ (t __j «—Subscript + refgrs ’Fo a fo.r\./vard
v wave propagating in positive z
l direction
z+ Az
f+(t+At,z+Az)=f+(t+At— . j

=f+(t—£+(At—£)j=f+(t—5)
A% A% A%

provided At —— =0 (condition) — V=
N At
Lt Az dz

V= — =— (condition)
At —>0At dt



f+<t,z)=f+(t—§j
l <+«——— Rewritten

f+(t+At,z+Az):f+(t—§)

Lt
provided v = E: dz (condition) ___
At —0Ar dt

~

v is identified as the velocity of wave.

Thus the function

z
fi@z)=f1, (f - ;j represents a forward wave propagating in positive z direction



Similarly, now let us examine the function

f(tz)=f t+£ +«——  Subscript - refers to a backward
% wave propagating in negative z
l direction

v

f(t+At,z—AZ):f(t+At+Z_AZj

=f(t—5+(Az—¥)J:f(t+i)
A% Vv A%

provided Ar— Az =0 (condition) Az
v — V="
At
|
Lt
V= Az _ dz (condition)
At—>0Ar dt
~

v is identified as the velocity of wave.

Thus the function

z
f@z)=1 (f + ;) represents a backward wave propagating in negative z direction



We have thus seen that

the function

z
fi(t,z)=1, (l‘ - ;j represents a forward wave propagating in positive z direction

and that

the function

Z
f(z)=f (t + ;j represents a backward wave propagating in negative z direction

How to choose the functions so that they can represent the periodicity of the
wave with space and tome coordinates?

Choose the functions as proportional to exp j(awt-z/v) for a forward wave and
to exp j(wt+z/v) for a backward wave in phasor notation?



4
Choose the functions as proportional to exp j(wt-z/v) fit2)= 1, (t B ;j (forward wave)
for a forward wave and to exp j(wt+z/v) for a . -
backward wave in phasor notation. f(tz)=f (t + —j (backward wave)
v

, , o Phasor is a rotating vector
Phasor diagram of a time-periodic

quantity, say magnitude of electric _
field E of amplitude E, rotating p Imagiary
with angular velocity @ N

With reference to physical quantity, say, electric field for
forward and backward waves, we may take the
functions taking into regard their periodicity as follows:

Beal Axis

E( cos wt

E =E,exp(jot)=E,exp jo(t—z/v)

interpreting t in phasor notation t as Imaginary part E,sin w¢?

t'=t—z/v (forward wave) Real part E, coswt
0

?
E=E expjwt=E,(coswt+ jsinwt)

and
E =E,exp jot"=E,exp jo(t+z/v)

interpreting t in phasor notation t/ as = E, coswt + jE, sin ot
0 0

t"=t+z/v (backward wave)



A [Imaginary
Axis

\Eo

E . =E,exp(jot)=E,expjo(t—z/v) Imaginary part E,sin ot

= E[cosw(t—z/v)+ jsma(t—z/v)] e | "
(forwardwave) So :
E =FE,exp(jot")=E,expjo(t+z/v)y L - E“” : | Real Axis
() COS @

= E[cosw(t+z/v)+ jsma(t+z/v)]
(backwardwave) /
interpreting t as t’and t” in phasor notation

t'=t—z/v (forwardwave) and ¢" =¢+z/v (backwardwave) Real part E,coswt

In an alternative approach, we can choose either the real or imaginary part of the
function to represent the wave. Taking the real part:

E. =FEccosw(t—z/v) (forwardwave
Y ( ) ( ) «<— [ =w/v=phasepropagation constant

E =FE,cosw(t+z/v) (backwardwave)

l

o(t—z/v)=ot—(w/v)z=0wt- [z

= phaseof theforwardwave -« Phase of the wave determines.(i) the
value of the quantity (here, typically,

o(t+z/v)=ot+(o/v)z=0t+ [z E_or E,) with which the wave is

= phaseof thebackwardwave < associated, and (ii) the state of
variation of this value.




velotion befween Them
wt — [ z =phaseof theforwardwave (recalled)

Put the phase of the wave as constant:

phase=wt — [ z =constant

<— Differentiating

dz o _
=— <— velocity of the constant phase of the wave

dt B

Voh B (phase velocity of the wave)

Variation of the quantity (here, electric field magnitude)
representing a wave, typically, forward wave, with space
coordinate z at a fixed time (snap-shot), typically t = 0:

E =E,cos(wt—[fz)
l « =0 (atafixed time)

E =E,cos(-pBz)=E,cosfz



. =E,cos(wt—fz)

E
l <« t=0 (atafixed time) (recalled)
E

,=E,cos(-fz)=E,cos fz <+— Positive maximum — cosfz=1

|

E, =E,

+

|

pz=0,2rx,4r, 67, ... (corresponding to the same phase: here, referring

|

Interval of

|

pz=2r

2=2Z

to positive maximum value of the quantity)

fz between two consecutive same phases at a fixed time

Distance between two consecutive same phases at a fixed time called
wavelength 4

(wavelength)

(wave propagation constant)
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E =FE,cos(wt—fz)

l «— z=0 (ata fixed distance)

E, =FE,coswt

l «— Positive maximum — coswt =1

E, =E,

+

|

wt=0,2r, 4r, 67, ... (corresponding to the same phase: here, referring
l to positive maximum value of the quantity)

Interval of ot between two consecutive same phases at a fixed time

|

wt =27 Time interval between two consecutive same phases at a fixed
distance called time period T

_ 2z Time interval between two consecutive same phases at a fixed distance
~  calledtime period T



f=

Il o : :
— = (wave circular frequency or simply frequency)
T 2r

l

@ =27 (wave circular frequency or simply frequency)

l

Voh = fA  (relation between phase velocity, frequency and wavelength)

12



Wave &7«47’1109» i eleciic M

Electric and magnetic fields are coupled in the following two Maxwell’s equations:

e _ﬂ@_H D=¢cFE
ot L (Maxwell’'s equations recalled) B= ,uﬁ
Vi =J+eE
ot |

In order to decouple these two equations to obtain a single equation, namely wave
equation in electric field, take the curl operation on the first of these equations and
read it using the second of these equations.

VxVsz—nyéa—H
t

13



—

VxVxE = — 1V X 5_H (rewritten) +— Partial time derivative and curl involving partial

l ot derivatives in space coordinates are interchangeable
Y g 5_ 5, OE , |
VxVsz—,ua—(VxH) «— VxH=J+¢ y (Maxwell’s equation)
t
}
. 0 - OE oJ  OE
VxVxE=—-u—(J+e—)=—u—-—
“az( at) o M o
l VxVxE=V(V-E)-V*E
a7 R (vector identity)
V(V-E)-V*E =—pu——
(V-E) Ho T HE o
\V4 P —V2E:—,ua—J—,ug 8212? «— V.E:E (Maxwell’'s equation)
£ ot ot 3

l <+<—— Rearranged

. OE aJ
VzE—,ug — = V(Ej + 14— (wave equation in electric field)
ot £ ot

14



Wave W&ow wm WWWW
VxE = — 1 a_H
ot (Maxwell’'s equations recalled)

—

-~ - OF
VxH=J+&—
ot |
In order to decouple these two equations to obtain a single equation, namely wave
equation in magnetic field, take the curl operation on the second of these equations
and read it using the first of these equations.

— —

VxVxﬁsz(j+8%—f):ij+5VX%—lf)

< Partial time derivative and curl involving partial
derivatives in space coordinates are interchangeable

—

~ - 0 ~ ~ oH _
VxVtzVxJ+ga—(VxE) +«— VXE=-u—— (Maxwell's equation)
t

ot
- - 0'H
VxVxH=VxJ - ue

ot*

15



5=
VxVxﬁ=V><j—,uga H

VxVxH=V(V-H)-V*H
(vector identity)

—

+— V-H =0 (Maxwell's equation)

ot’
l .
V(V-H)-V’H =V xJ - ue 8@5
2 7y 62H - . . . .
V°H — ue v =-V xJ (wave equation in magnetic field)

Wave fnomaﬂ'&ow Tﬂwugﬂ o f»wa-ara«w medivm

_ O°E ) oJ
V?E — ue =V| &£ =
Mo (5) ry .
- r—  p=J=0
V?H - ug =—VxJ
Y
VE—pue—=0
4 [ (source-free wave equations in electric
~ 217 and magnetic fields) (p=J =0

16



Consider a uniform plane wave propagating through an unbounded free-space medium.

. O*E
V2E — ue =0
H ot?

- 0°H
V2 H — ue =0
#o o =7

(source-free wave
equations in electric and

magnetic fields) (p = J= 0)

A plane wave has a plane wavefront. A wave
front is an equi-phase surface over which the
phase of the quantity associated with the wave
remains constant. For a uniform plane wave, in
addition to the phase, the amplitude of the
quantity associated with the wave also remains
constant over the plane wavefront.

Formulate the problem by considering wave

52 &~ propagation along z in the rectangular coordinate
V’E = e, —* 8t system.
V? E, 82Ey 2p
& . ~
e [ — viE-wZE o
52 E. ot
V? E. g
= Hyéy 5t2 |
O*H |
VH = e, —*
o 0°H
) O’H, | +—— V’H-pus—5=0
VH, = ey —= ¢ Ot
ot
0°H
V’H. = e :
z /’10 0 at2

17



O’FE

VE =u.¢ x
x — Hyéy a7
0’E

2

V Ey :/’1080 t2y
0’E

V’E. = pyg, —=
z Il’lO 0 6t2

O’E. O0°E, O’E,

+ +
ox> oy oz

2 2 2
O’E, O°E, O,

+ +
ox> oy oz

O’E. O0’E. O°FE.

+ +
ox* oyt oz’

O*E )

ot*
O0*FE

y

= Hyé

= tEo—5 |

ot
O’E.

= E,——
/Uooatz |

O’ H,

O°H, O°H,

ox*

2
O°H,

+ +
oy’ oz’
2 2
O°'H, 0°H,

ox?
O’ H

+ +
oy’ oz’

O’H, O°H,

Ox?

+ +
oy’ oz’

*H_ |

o

o,
o’

O’ H.

or

= Hyé

VT

= Ho&y

= Hyéy
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For a uniform plane wave propagating along z

/

N

O’E. O°E. O’E, O°E,
o oy o LT
2 2 2 2
°E, JE, OE _OE |
o ot o
O’E. s O’E. | O°E. ; O’E.
o o e |

O’E, O°E,

PR P

0°FE 0’FE

2y :/’l()gO 2y (

oz ot

O°E. O’E.

o2 T

J

(wave equation in electric field for a
uniform plane wave in free space)

0 0

o ay

™.

N\

O°H, 0O°H, OH, _ e 0'H,
ax? ot et TV e
0’H, N 0’H, . 0’H, s 0'H, &
O’ oy’ oz’ 0 o
O°H, O°H. 0°H._ e 0°H,
ot ot a2 T o
)
0*H o’H |
o M T
0°H, 0’H,
0z* ~ Fbo ?
O’ H. O’ H
0z* ~ Hoo 87

(wave equation in magnetic field for a
uniform plane wave in free space)

19



—

V-E=0 <+ V.E=£ (Maxwell's equation) V-H =0 (Maxwell’s equation)
&X
p=0
for a free- spacemedium
OE, ,OE, OE _, 9_9 _, OH, OH, oH,
o dy oz Ox Oy o  dy oz
l (for a uniform plane wave l
propagating along z)
oE, 0 OH, 0
oz 0z
\ E_and H_ areeachconstant /
/ with z \
o) O°E O°E O0*H O°H O°H
2 -0 > Z ~z _ e ——z z _ c z «— z =)
o2’ o o o o o’
2 2
. _, LA
ot ot

20



O’E. | 0’H,
==0 — Integrating — —==0
ot l ot l
OE. _ , | OH, _ -
Py — Integrating — o
l A,B,C,D areconstantswith? l
E =At+B H =Ct+D

(linearly dependent on ) (linearly dependent on )

E, and H, are each constant with z and that they are linearly dependent on t.

|

Contradicts with the dependence of these quantities as exp j(wt-z/v) (for a forward wave
in free space considered) with non-zero values of the constants A, B, C and D.

14— Avoidance of contradiction

E=dr+B «— A=8=C=D=0 — y _c4p
\ E =0 /
L -0
}

A uniform plane wave propagating through an unbounded free-space medium is
essentially a transverse electromagnetic wave (TEM) with no electric and
magnetic field components in the direction of propagation (along z) o1



_ «— J =0 (forfreespace) - N
I T | y /
VxH=J+&— (Maxwell’'s equations recalled) e )/ 2
ot ) y )//
~ OH NE_KT

VXE=—u—m
?t A uniform plane wave propagating
- OE through an unbounded free-space
VxH = 88_ ( medium is essentially a transverse
4 t . :
electromagnetic wave (TEM) with no
E =0 electric and magnetic field components
/ H =0 \ in the direction of propagation (along z)
oF OF 0 oH OH 0
Ya. +—*d, =—u,—(H d +H d ——rad +—*d =¢,—(E.d_+FE ad
82 X 8Z y /uoat( xx y y) 6Z X 82 y Oﬁt( x X y y)
V\ /V

Equating the x-components and y-components of the
left- and right-hand sides

aEy = ﬂo aHx \ _ aHy _ aE'x |
0z o | Oz O ot >
aE X 8Hy aH aE y
=~ H ==&,
Oz ot Oz ot )

22



Field quantities varyas OH,  OF, |
— — 80
exp j(wt—fz2) 0z ot
oH,  OE,
l oz ot )
\ é =jw | / l
o’
o ( PH, =we)E,
gE_J'B BH, =-weE,
— EH+EH =0 « E_ 5 _F
l H, H. we,
E-H=0
}
Electric and magnetic fields are at right
angle to each other.
WOy _ 15 )
g s, )
}
1
ﬂzza)zﬂogo — Q:vh: =C
I \ Ho&o



1

- - @
E-H=0 o Vph T =¢
p" \ Ho&

. S

Unbounded free-space medium supports transverse electromagnetic
(TEM) wave, such that the directions of the electric field, magnetic
field and propagation are mutually perpendicular to one another,
propagating with phase velocity equal to the speed of light c:

1

Hy=47x10" Hm — C:\/ﬂjﬁxmgm/s — £ =1/367)x107° =8.854x19"'"% F/m
00

Intrinsic impedance 7, of the free-space medium is

2 2\1/2
E (E +E)

77 = =
E._ £, oy — 7 H (Hx2+Hy2)1/2
Hy H_ o) l
P 1/2
WU, 2 2
, " (,3 j (H +H,)
— (Ex +Ey ) _ WU,
0 (sz +Hy2)l/2 (sz +Hy2)1/2 ﬂ

10

24



_au, :
My = —ﬂ (rewritten ) —  B=wJue,

1, =47x107 H/m
ty T

Mo =
E
l TN g, =1/(367)x10” =8.854x19™2 F/m

My = /ﬂ =120x
)

(intrinsic impedance of a free-space medium)

2 2
B = 1eg,

25



Wore frwmafion Wougﬁ o

Let us recall wave equation in electric field:

N j
VzE—,ug 0 — = (2) +,ua—J (recalled)
ot £

(wave equation in electric field) } (conducting medium)

l =cE
o . )
b lE L TE
VIESHO S e o (
l P (jo)jo)=-o’

V’E = jou (o+ joe)E +— y =+ jou (c+ jwe)

l

V’E = 72E

26



V’E = 72E
——  Expanding Laplacian V?

) 9_0_
ox Oy
— V= \/ja)ﬂ (o+ jwe) (for a uniform plane wave

propagating along z)

v

O’E, . .

S=yE. = jou(c+ jos)E, _ _
0z | < y is called the propagation
02E , constant of the wave

822y =y°E, = jou(c+ joe)E,

l

Ex = ExO exp(—yz)

(solution for a forward wave) (subscript 0 referring to field amplitudes)
E, =E exp(-yz)

l — y=Jjou(c+ jwe)=a+ B

E. =E  exp[—(a+ jB)z]=E,  exp(-a z)exp(—jp z)
E =E  exp[—(a+ jp)z]=E, exp(-az)exp(—jfz)

o =attenuation constant of the wave
[ =phase propagation constant of the wave

27



T

E. =E  exp[—(a+ jB)z]=E,  exp(-a z)exp(—jp z)
E =E  exp[—(a+ jB)z]=E, exp(-az)exp(—jfz)

o = attenuation constant of the wave
<— Invoking time

=phasepropagation constnat of the wav
dependence exp(jat) p=p propas

E. =E  exp[—(a+ jB)z]=E,  exp(-a z)exp(—jf z)exp(jwr)
E, =E  exp[—(a+jf)z]=E , exp(—a z)exp(—jp z) exp(jwr)

N\

Amplitude exponentially attenuates as exp(—« z)

]/:\/]C(),Ll(O'-F]C()E) :a+jIB (recalled)

l \ For a good conductor:

. . o >> W€
y=+Jjouc =a+jp

j

28



y =4 jouc =a+ jf (foragood conductor) (o >>we)

J S

Squaring Separate real and imaginary parts

jou,o=(a+jB) =’ +(jB) + j2af=a’ - + j2ap

l Equating real part l Equating imaginary part
a’ - =0 apty o =208
[0)INes
o = =
p 2

(for a good conductor) (o >> we)

29



WL,

o = =
g 2
(for a good conductor) (o >> we)

E. =E  exp[—(a+ jB)z]=E,  exp(-a z)exp(—jf z)exp(jwr)
E, =E  exp[—(a+jf)z]=E , exp(—a z)exp(—jp z) exp(jwr)

Amplitude exponentially attenuates as exp(—« z)

Taking a.= 1/6, the exponential attenuating factor of the field
amplitude may be put as

exp(—a z) =exp(—z/0)
Putting z = 6, we appreciate that the field amplitude at the surface

(skin) of a good conductor at z = 0 attenuates by a factor of exp (-1) =
1/e at a depth equal to z = 6 called the skin depth of the conductor.

a=1/06
'
S=lla  «— g= |PHhC
2
'
2
O0=_|—— (skin depth
o ( pth)

30



o= 2 (skindepth) «— w=2xf

[0]INey
|

S= 1 Skin depth decreases with the increase of the conductivity of
V)TN the medium and operating frequency

l =p= % (o >> we)

— l — i Skin depth is directly proportional to the wavelength in
B 2r the conducting medium.

Typically, for copper (o = 5.8x10” mho/m), at operating frequency 50 Hz,
the value of the skin depth is ~ 9.4 mm.

The skin depths are ~2.1 mm, ~66.1 um, and ~ 2.1 um, for frequencies
1 kHz, 1 MHz, and 1 GHz, respectively. For 10 GHz frequency, we find the
skin depth as 6.61x10-” m, which happens to be in the range of wavelength
of visible light.

31



(Free space
medium)

Let us recall the expression for electric field intensity at depth z from
the surface of the conductor:

E, =E  exp—(a+jf)z (recalled)
E =FE  exp—(a+ jpB)zexp(jax
(RF time dependence j«t understood) — Y yo XP (a+jp)zexp(jex)

E, = Electric field intensity amplitude at the surface of the conductor

32



Current density along y at depth z from the surface
of the conductor

=ot , exp—(a+ jp)z

Current through the strip of infinitesimal X
thickness dz and width W E =E (Free space
%) 0

medium)

=[o E,,exp—(a+ jp)z][Wdz]

Current through the entire conductor of
width W

= [ WE s exp—(a + jB)zdz
0

exp—(a + jﬂ)zT _WE,

=0'WEO[ -
Lo —(a+iB) ], a+iB

Current through the entire conductor of unit width (W= 1)

ok,

_a+jﬂ

33



Surface impedance Zis defined as

/ Eyo

_ Potential drop per 'unit' length at the surface of the conductor

Z

N

Current through the entire conductor of 'unit' width
a=1/6 T~ ok,
/ a+ ] ﬂ

E .
y0 :a+]ﬂ:g+jgzi+jL:Rs+sz
ok o o "o o8 ~od

a+ jp
‘ R, = Surface resistance (Q or Q/ )
Comparing the real and imaginary parts

X, = Surface reactance (Q or Q/ )

RS:XS: ﬂfﬂo

34



o resistonce of o straaght conduneting wire:

We can find the ac resistance of a straight round wire (that is, of circular
cross section) made of a good conductor at high frequencies and compare it
with its dc resistance to show that the ac-to-DC resistance ratio of the wire
is a/26, where a is the radius of the wire and ¢'is the skin depth of the
conductor making the wire.

Expression for the dc resistance R, of a wire
of length / and radius a is well known:

1 !

2
onwa

R,

c —

Let us next proceed to find an expression for the ac resistance

R, of the wire using the same approach as used to find the
surface resistance.

35



For a round wire of radius a large compared to the skin depth 6, a point inside the
wire where the electric field is significant will not ‘see’ the curvature of the round
wire and therefore we can take the surface of the wire as a planar surface.

Therefore, following exactly the same approach as used to find the surface
resistance of a planar conductor we can find the resistance of the round wire

interpreting the width as the circumference of the wire (W = 27a). g
. . — (Free space
Cgent through the wire of width W = 27a E,o = E, medium)
ok,
=———(2m)
A a+jp

Potential drop across length / at the
surface of the wire

Ve
=E/
Impedanceof thewire
7 Potentialdropacrosslength/ at thesurfaceof the wire
v R e Current through thewire of width W =2m
E l . .
Z. = o _(atjPl_ P =R+ jX,

ok, ocQm) oQm) o(2m)
——(2m) $
a+jp

Separated in the real part R, which is the ac resistance of the wire, and
the imaginary part X,., which is the ac reactance of the wire 36



al N jpl

l

Zac = / + ]l =
00 (2ma) o0 (2ma)

R, o002ra a

1 I 25 ™

dc . 3
ona

ac - = Rac + ]Xac
o(2m) o(2m)

Rac + ]Xac

Since the wire radius a>>¢, skin depth, the
wire ac resistance R,.>>R,., the wire dc
resistance

37



o resistonce per unit lengtiv of o coaxial coble:

We can find the ac resistance of a coaxial cable made of a central solid round conductor and
a coaxial annular conductor surrounding it with a dielectric medium filling the region between
the conductors by extending the analysis presented for a straight round wire. For a good
conductor making the coaxial cable and at high frequencies, as in the case of a straight wire,
we can treat the inner and outer conductors behave as a planar surface.

— L ! (recalled expression for the ac resistance of length / of a straight round wire)

68 2ra

ac

«—— Concept of finding the ac resistance of a straight wire extended to the
inner conductor of radius a and to the outer conductor of radius b

T

_ 1 R
“ od2ra “ o8 2mh
(ac resistance (ac resistance
contributed by the inner contributed by the outer
conductor of length /) conductor of length /)
~ /
1 I | 1

= + = i + l [ (acresistance of a coaxial cable of length /)
co2ra oo2xb 2mdo\ a

Resistanceper unit length (/ =1) of a coaxial cable = ; l + l
2o o\ a b 38



Wave fwmafiow %ou;ﬂ sean woler

The objective of the study is to find out which frequencies of operation (lower ~ 10
kHz or higher ~ 10 GHz) should be preferred from the standpoint of a lower
attenuation of the wave propagating through sea water.

Maxwell’s equations (recalled):

. oH . 5
VxE=—py— +— yxj--98
ot ot

39



—

= oH

VXE=—-u,— (Maxwell's equations) Partial time derivative and curl involving partial
derivatives with respect to space coordinates are
l / interchangeable
VXVXE:_yOVXaa_H:_ﬂOg(VX[_}) — vXﬁ:GE+g%_E (Maxwell’s equations)
t t t
l . RF quantities vary as exp j(awt — [z)
— ~ 0
VXVXE:—IL[O—(GE-F&'@—) /
t 0
J/ \ a_ = jo
t

V(V-E)=VE = - jou,of: - ue(jo)(jo) E

|

V(V-E)-V’E =—jau,(c + jowes)E - .

l

V?E = jou,(c + joe)E =y°E
\

et
[l
=

y =\ jou(c+ jos,) =a+ i
40



V2E :ja),uo(c7+ja)5)E =’E

| S~ y=\jou(o+jws) =a+
2 2 2
0 E;’y +8 E;’y +8 E;’y =7/2Ex’y gzgz
ox oy oz ox Oy
i (uniform plane wave supposedly propagating along z)
O’E,, _E
Ox” Y —

y =Jjou,(c+ jos) =a+ jB

l

E = Ex,y exp(—yz) = Ex,y exp[—(a+jB)]z= E},y exp(—az) exp(—jfz)

Let us examine two situations: one for 6>>wes and the other for o<<we with reference
to sea-water communication.

£=8lg,=81x8.854x10""F/m

(sea water)
o =4 mho/m
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Two alternative ways of putting the propagation constant y

y = jou(o+ jos) =a+jp
/ \

, . o
¥ =\/jwﬂ06(1+ﬁ) =a+ jp /4 2]@\/ﬂ05(1+ﬁ)1/2
o

Propagation at lower frequencies ' =10kHz =10x10° Hz (typically )

E = Ex,y exp(—yz) = Ex,y exp[—(a+jB)]z= Ex,y exp(—az) exp(—jfz)

0F _2WE 11910 S =10kHz=10x10"Hz (typically )
c O £=8lg,=81x8.854x10""F/m

(sea water)
o = 4mho/m

Let us recall the following expression at
lower frequencies:

. WE .
y= \/Jwﬂoa(H%) =a+ jf
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y = \/ja)luog(l-pjﬁ) =a+jf (recalled at lower frequencies)
o

f=10kHz =10x10’ Hz (typically )
W&

2nfe _ -—
— 7 ~1.1x107° (recalled) 3:8150:81><8,854><10‘12F/m

o o
o = 4mho/m

} (sea water)

Ignoring the second term under the radical)

A

v

y=+jou,0 =a+ jf (separatin g the real and imagmary parts)

<— Separating the real and imagnary parts

v
/0) O
alf — ﬂlf — A (I’ecalled)
2 (obtained by separating the real and imaginary parts)

(subscript ‘If’ referring to lower frequencies)
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Propagation at higher frequencies f =10GHz =10x10° Hz (typically)

Let us recall the following expression at
higher frequencies:

y = jon e 1+ ——)"2
jowse

f=10GHz =10x10° Hz
10" «—  &=8lg=81x8.854x10""F/m

29 o =4mho/m

A

} (sea water)

<— Expanding binomially and ignoring higher order terms

v

. 1 o .
y=joue(l+=———)=a+jp
2 jows

|

: o / :
J O Hp& + 5 Ho _ o+ jB  (subscript ‘hf referring to quantities at higher frequencies)
&

44



o [u, o |u
J O, & "' a = Qs + B < Oy = .
2\ ¢ 2\ ¢

CO,UO D O T Y A
/ 2(05 2a)lf8 2

Q¢
(w referrmg to lower frequencies)
l (a) 27#) f =10kHz =10 x10° Hz (lower frequency, typically)
a - =81g,=81x8.854x10"*F/
L ~107 Ui * = (sea water)
Oy o =4mho/m

l

Lower attenuation at lower frequencies than at higher frequencies

. )N
,Blf - °

2 -
PR S (=225, ) ®15m
D wH,O )2l
2

Lower frequencies are preferred to higher frequencies for sea-water
communication for lower attenuation as well as for a reasonable
antenna size typically of the order of half wavelength in sea water (as
compared to the corresponding antenna size in free space).
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Wave Wmﬂww mnm o

Povma oscilleion
EMM index of sonosphere
%M& waoavedy omn an Mwn W
%al&fww wawes on o lectron bear
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Pl

Consider an ensemble of electrons and positive ions maintaining overall charge neutrality

Consider the physical displacement (perturbation) of electrons (which are much more
mobile than positive ions) from their equilibrium position to a small extent

Space-charge electric field in the direction of the displacement of negatively
charged electrons —,  providing a restoring force

Overshoot of electrons

Restoring force again coming into play

—

Oscillation of electrons about their mean position at the natural angular
frequency— electron plasma frequency.

} d ~ - d -

+ + 0+ o+ 0+ + + + + o+
Displacement of electron lgyers by  + e o+ e e e T
an amount & and the resulting - - - - = - = = = =
space-charge restoring force + + o+ o+ 4+ + + + + o+

+ + + + + + + + + o+

—~{g b
I 7 I »Z
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( J( )“{ J( a.)= & ps = surface charge density
el '\ ola=péa po = volume charge density
(electric field due to (electric field due to S O o = cross-sectional area
positive-end layer) negative-end layer) l perpendicular to displacement
——— lel=ng
E="Pl5 .
g Displacement of electron layers by
an amount & and the resulting | d -] - d -
l space-charge restoring force e M _ * _ * _ * _ * _
‘po‘g ~ * t o+ o+ s * + + + *
E, = - - - - - - - - - -
‘ £ + + O+ o+ o+ + + + * *
_ + + + + + + + + + o+
l _— n=e/m —~ig -
d’¢ I >~z | >Z
m—, = ek, (force equation)
dt
l (before perturbation) (after perturbation)
2
d’¢ ard 7] 2]
dt ) €0
| o _ e
w = L L
p
2 )
e _ _ 2
2 —0,

dt 48



e _ 2 nlp
l Solving

¢ =Aexp(jw,t)+ Bexp(—jw,t) (Aand B are constants)

l

& =A(cosw,t+ jsmw,t)+ B(cosw,t — jsnw,t) =(4A+ B)cosw,t + j(A— B)smw,t

|

¢ =Ccosw,t+Dsinw,t

(C =A+B and D = j(A-B) are constants)
Set \\

E=0att=0 — » C=0

v

¢ =Dsinw,t

l

Solution indicating that the electrons oscillate about their mean
position with an angular frequency of oscillation @, called the
plasma frequency (electron):

o~ e

? &, 49



Refradtive indew of ionosphere

The ionosphere is located at the heights of 50-300 km from the earth.

The ionosphere consists of electrons and ions

The ionization in the ionosphere is caused by solar radiation (ultraviolet, soft X-ray, a-particle (helium
atoms from which the electrons are knocked off), etc.)

The sky-wave propagation utilizes the phenomenon of total internal reflection from the ionosphere,
which, in turn, is dependent on the value of its refractive index.

We can find value of the refractive index of the ionosphere by studying the interaction of
electromagnetic waves with the ionosphere.

The current density in a medium constituted by charged particles in a free- space medium
consists of the convection current density (unlike the conduction current density in a conducting
medium) and the displacement current density.

i

J =Convection current density + oD The relation between the convection

{ current density J, volume charge density p
and velocity v of charged particles
(electrons) has been obtained earlier (in
Chapter 3 while studying Child-
oD Langmuir’s law) as:

ot J = pv.

We can write the relation in vector form as

J = pv
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Current density equation:

Perturbed electron current density in the

ionosphere under the influence of an _ _ Time dependence as exp j ot
interactive electromagnetic wave D=¢E o . —
\ :/ B ot B
- . oD ~ OF «~
J:p0v+—=pov+80

Perturbed convection current density
obtainable from the relation J = pv
(electrons not having a dc beam
velocity unlike in an electron beam)

Displacement current density

J= p0\7+ja)gOE (current density equation)
Force equation:

. dv, oOv, dzov, Ov ov, O0v, ov,
av = = + = +Vv—=—"+(v,+Vv,)—
mo o= ek dt ot dt oz Ot oz Ot Oz
\ ov, ov, Ov, ov, ov, 0v, ov,
l =—+(V,+V)—=—+V,—+V,—=—+V,—
ot oz Ot oz oz Ot Oz
v = _ov
ok ot

(ignoring v, % which 1s of second order of importance )
Z

(v, =0 for electrons of the ionosphere )
o1



ov

m— = eF (force density equation) (recalled)
ot
| T
B — a)
- a
jomy =ekE

e :
14— 1 =— (charge - to - mass ratio of an electron)
m

—

5= &  J=p+jweE (currentdensity equation) (recalled)
j@ l
I Lz NP/ &
J = joe E[py———+1]= joe, E(1-——5-)
Jo jo )
= o, - 1P ‘UHPo‘ (recalled)
J = jos,(1-—5)E w,= =
10, ) €9
2 2
T ; I @y @
= ]a)geﬂéCtiveE > Eefietive = €0 (1 _—2) — gr,eﬁective = Eeficctive /80 =1 _?
Refractive index n of the ionosphere l 2

12
n(= /€, efetive ) =1~ a)—pz (refractive index of the ionosphere)
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Ma waowves on an elecAron karw

It is of interest to study the interaction of electromagnetic waves with a charge flow, for instance,
a beam of electrons, which is a constituent of many practical electron devices such as vacuum
electron devices like microwave tubes and charge accelerators. We are going to show that an
electron beam supports two space-charge waves. Coupling of space-charge waves with
electromagnetic waves is of relevance to understanding the behaviour of practical electron
devices. Our study will be restricted here to finding the phase velocities of space-charge waves
supported by an electron beam.

Let us consider a large cross-sectional area of the
Current density equation electron beam perpendicular to the beam flow along z
over which the beam velocity v, volume charge
J = pv (convection current density) density p and current density J remain constant:
T~ |
J=J,+J, One-dimensional beam flow
d/ox=0/dy=0

¢ P=Pot P Subscript 0 refers to unperturbed quantities
0/0z#0

> ——
V=Yt Subscript 1 refers to perturbed quantities
v Jo = Povy

‘%_i_']l =(Py + L)V, + 1) :,09/60 TPV T PV + PV

«— Jo =PV

J, = pov+ oy + oV

|
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J, = pov+ oy + oV

) Taking perturbed quantities much smaller than unperturbed quantities
so that we can ignore the product of perturbed quantities p,v;,

J1 = PV Vo0

l <+<—— Taking partial derivative with respect to z

— +v % + % =0 «—— (V.]Jr@_p =0) (continuity equation)
0z 0z 0z 0z Ot ot

| T

6/8)6:8/8)/:0}

|
>
[w)

A

— =y vy 0/6z#0

aIOI"'VOaIOI— 0% — D:2+ g
ot 0z 9 ot oz
Dp, =-p, % (to be recalled later in the analysis)

0z
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Force equation

mﬂzeEs

dt
M _Cp _pE
dt m

Space-charge electric field was introduced in course of the deduction
of electron plasma frequency of oscillation in a space-charge
neutralised medium consisting of electrons and relatively immobile
positive ions. In an ideal vacuum, it is not possible for electrons to
move to form an electron beam because of mutual repulsive force
between the advancing and the following electrons. However, in a
practical vacuum electron beam device like a microwave tube where
the vacuum is not ideal, the presence of charge neutralising positive
ions makes it possible for the electrons to move and form an electron
beam. The space-charge field E,comes into play for any perturbation

\ in the position of electrons from their equilibrium position.
dv, 0v, dzov, Ov ov, 0v, ov,
= + = +Vv—=—+(v,+Vv,)—
dt ot dt 0z ot oz Ot
ov, ov, oy 0v, ov,
:—+VO—+V1 :—+VO_
! ot oz Oz Ot oz
8\;1 81;1 P P (ignoring higher order term,
—, VoL T 77Es — D=— 1ty — being the product of

perturbed quantities: v dy, / 0z

Dv, =nE, (to be recalled later in the analysis)



ov,

Dp =—p. —L  (recalled)
Y Lo Py
D—g+v i
<+— Performing D operation — o oz
Dv, =nE_ (recalled)
ov 0 / 9, OE o 0
D’p =—pD—L=—p,—Dv,=—p,—nE =— 5 —+v,—=D
PL=mPD =Py DV =P T = TP 15, +vo 7, =Dl

(0/z, partial derivative with respect to z, and D involving d/z. partial derivative with respect
to z, and d/t, partial derivative with respect to f, being interchangeable)

(for a uniform plane wave propagating along z: 9/ox =06/0y =0)

v

E
D2101 =-1p, oE, — % oy (following from Maxwell’'s equation: v . f — £_)
l 0z 0z &y &,
— —|1|P
szl =~11P P - 1% P = ‘ H 0‘ P = _a)pzpl
l €0 €0 €0
. |
D' =-o, o~ o _ [lad
l €y 3 ’ o
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D
l Perturbed quantities vary as exp j(wt — fz)
D

0 o . . :

=—+Vvy—=jo—jpv,=j(o-pv) 5 e

ot 0z 2w
ot
g:—Jﬁ)

(dispersion relation of space-
charge waves)

Y



w-pv,=to,

Vo
OF o _
p= ==L.FPB,
Vo
o\ |
—~ = f3, (plasma propagatio n constant)
Vo
v, = w__ o The upper sign = Fast space-charge wave
B oF , \he lower sign = Slow space-charge wave
v, =( Wo >V, Wo <V
w—, a)+ @,

(phase velocity of fast
space-charge wave)

(dispersion relation of space-charge waves)
(recalled)

@ .
— = f3, (beam propagation constant)

(phase velocity of slow
space-charge wave)
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%Mww waoves on an dechron bearm

An electron beam supports cyclotron waves in the presence of a dc magnetic field in the
direction of beam flow, provided there also exist the components of beam velocity transverse to
the magnetic field. The interaction of electromagnetic waves with an electron beam supporting
cyclotron waves forms the basis of understanding the behaviour of electron beam devices such
as the gyrotron for the generation of electromagnetic waves in the millimetre-wave frequency
range, which finds application in industrial heating, material processing, plasma heating for
thermonuclear power generation as well as in domestic microwave ovens.

Let us consider the electron beam along z and a uniform dc magnetic field present in the
region of beam flow, also along z. The components of Lorentz forces exist transverse to the
longitudinal magnetic field. Let us treat the problem in rectangular system of coordinates
for a large cross-sectional area of the beam perpendicular to the axis of the beam and
magnetic field (that is perpendicular to z direction)

l / n =e/mcarrying the negative sign
. of the electronic charge

dv e . = . =

1x :—(leB)x:ﬂ(leB)x . d
dt m < subjectto Lorentz force W _Cp_ nE led
&y e ~ O instead of force due to dt m s (recalled)

Y = Z (%, xB), =n(¥ x B) space-charge field E;
dt m g 7 (force equation for an electron

T . subject to space-charge electric field)

Lorentz force =evx B
59



N\

dv e .. = L =
— =—xB), =n(v,xB),
dt m >
dv, e _ - L =
dty :%(leB)y:n(leB)y)

«—

Dle = 77(‘71 Xé)x
Dv,, =n(¥ x B),

Dle = UBvly = _a)cvly}

Dvly = _nBle = a)cle

(recalled)

Recalling the same approach as used to present
the expressions in terms of the operator D

%) 0
ot 0z
Y
a, a, a,
Vv, XB =1y Vi, W
B, By B.

«—— B,=0, B,=0, B.=B

(magnetic field B is along z)

@, =-NnB= ‘U‘B <— (electron cyclotron frequency

introduced in Chapter 4)
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Dy, =-w.v, y

/ Dy, y = WV,
%) 0

} (recalled)

D=—+v,—
Dv, =-o.v, or ‘oz Dv,, =o.v,
\ Performing D operation
Dzle = _a)chly = _a)c (a)cle) = _a)czle
l Dv,, =@ v, (recalled)
2 2 2
D'=-0 —» Compare it with —— D’ = —@, (recalled)

Led earlier to the derivation of

Following the same approach _ _ _
the dispersion relation for

we can write the dispersion

relation of cyclotron waves space-charge waves

simply by replacing w, with «, l
o—pPv,Fw, =0 — o-pv,=*o,

(Dispersion relation for cyclotron waves) (Dispersion relation for space-charge waves)
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w—pv, ¥, =0
(Dispersion relation for cyclotron waves)

Following the same approach
we can write the phase
velocities of cyclotron waves

simply by replacing , with «,

)

Wo >V,

v, =(
" o-o,

(phase velocity of fast
cyclotron wave)

and

v, =( WV, <V,
0+,

(phase velocity of slow
cyclotron wave)

«—

o-pv, =to,

(Dispersion relation for space-charge waves)

|

Led earlier to the derivation of
the phase velocities of fast and

slow space-charge waves
0,

C()—C()p

(phase velocity of fast
space-charge wave)

- vpz( WV, >V,

and

0
vp:( )VO<V0
Q)‘I‘C()p

(phase velocity of slow
space-charge wave)
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Space-charge waves

w—ﬂvoia)p =0

Space-charge and cyclotron waves

) =

/ p

ura

&y

Cyclotron waves

RS

w— v, Fw,=0 ‘/

0o 0_0 0T,
ﬂ:—:—_l_—:
v, Vo Y v,
®
Vv, =——V,
OF O

Upper sign for the fast wave and lower sign for the slow wave
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v'Wave equations—one in electric field and the other in magnetic field—have
been derived with the help of those two Maxwell’'s equations in which these field
quantities are coupled.

v'Solutions to the wave equations in electric and magnetic fields have been
obtained for uniform, plane electromagnetic waves propagating through an
unbounded free-space medium.

v'With the help of Maxwell’s equations and the solutions to wave equations in
electric and magnetic fields, it has been established, with reference to uniform,
plane electromagnetic waves propagating through an unbounded free-space
medium, that

¢ there exists no components of electric and magnetic fields in the
direction of propagation;

¢ directions of the electric field, magnetic field and wave propagation
are mutually perpendicular to one another;

¢ transverse electromagnetic (TEM) mode of propagation is
supported by the unbounded medium;

¢ intrinsic impedance and phase velocity of the wave are each
related to the permeability and the permittivity of free space, the wave
phase velocity being the speed of light c.
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v'Concepts of the skin depth, surface resistance and ac or RF resistance of a medium
have been developed by studying the propagation of uniform, plane electromagnetic
waves propagating through a semi-infinite conducting medium, considering such waves
to be incident from a free-space region to a planar conducting surface extending to
infinity.

v'Ratio of the ac or RF resistance to dc resistance of a conducting wire of circular cross
section becomes equal to the ratio of wire radius to twice skin depth, considering the
wire to be of high conductivity and/or wave frequencies to be very high such that the skin
depth of the conductor becomes small enough compared to the wire radius to make the
planar conductor approximation for the conducting wire of circular cross section.

v Lower frequencies, say, ~10 kHz is preferred to higher frequencies, say, ~10 GHz, in
view of comparatively lower attenuation of waves at such lower frequencies for sea-
water communication as revealed by studying propagation through unbounded sea-
water of finite conductivity and permittivity.

v’ Study of wave propagation through a medium of charged particles give the concepts
of sky-wave propagations through ionosphere as well as those of space-charge waves
and cyclotron waves on an electron beam.

Leaders are mooma?&ol% g0 Wougﬁ Ww é
ofﬂo book /o'& mowfb;mlw and more worked-ou
mmf&w and veview MWM 65



