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Engineering Electromagnetics Essentials

Chapter 6

Wave equation and its solution for a wave 

propagating through an unbounded 

medium
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Objective

Topics dealt with

Background

Study of propagation of uniform plane electromagnetic waves through 

unbounded media such as free-space and conducting media   

Representation of a wave

Establishment of wave equations in electric and magnetic fields

Wave propagation through an unbounded free-space medium

Wave propagation through a resistive medium 

Skin depth, surface resistance and ac resistance

Wave propagation through sea water and choice of operating 

frequency vis-à-vis attenuation

Wave propagation through a medium of charge particles 

Basic concepts of time-varying fields developed in Chapter 5 

including Maxwell’s equations
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A quantity that varies periodically with space and time is said to be associated with a 

wave. Let us see how a mathematical function can represent a propagating wave. 
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Let us examine the function
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Subscript + refers to a forward 

wave propagating in positive z 

direction 

Representation of a quantity associated with a wave
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v is identified as the velocity of wave.
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Thus the function 

represents a forward wave propagating in positive z direction 

Rewritten 
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Similarly, now let us examine the function
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Subscript - refers to a backward 

wave propagating in negative z 

direction 

v is identified as the velocity of wave.
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Thus the function 

represents a backward wave propagating in negative z direction 
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We have thus seen that
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the function 

represents a forward wave propagating in positive z direction 

and that
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the function 

represents a backward wave propagating in negative z direction 

How to choose the functions so that they can represent the periodicity of the 

wave with space and tome coordinates? 

Choose the functions as proportional to exp j(t-z/v) for a forward wave and 

to exp j(t+z/v) for a backward wave in phasor notation?
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Choose the functions as proportional to exp j(t-z/v)

for a forward wave and to exp j(t+z/v) for a 

backward wave in phasor notation.

With reference to physical quantity, say, electric field for 

forward and backward waves, we may take the 

functions taking into regard their periodicity as follows:  

)/(exp)exp( 00 vztjEtjEE −==+ 

interpreting t in phasor notation t/ as

(forward wave)
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and    

)/(expexp 00 vztjEtjEE +==− 

interpreting t in phasor notation ti/ as 

(backward wave)
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In an alternative approach, we can choose either the real or imaginary part of the 

function to represent the wave. Taking the real part:
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Phase of the wave determines (i) the 

value of the quantity (here, typically, 

E- or E+) with which the wave is 

associated, and (ii) the state of 

variation of this value. 
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Wave phase velocity, wavelength and frequency and the 

relation between them

(recalled)   waveforward  theof phase =− zt 

)cos(0 ztEE  −=+

Put the phase of the wave as constant:

constant   phase =−= zt 

Differentiating
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=phv (phase velocity of the wave)

velocity of the constant phase of the wave

Variation of the quantity (here, electric field magnitude) 

representing a wave, typically, forward wave, with space 

coordinate z at a fixed time (snap-shot), typically t = 0:

zEzEE  cos)cos( 00 =−=+

 time)fixed a(at   0=t
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 time)fixed a(at   0=t (recalled)

1cos    maximum Positive =→ z

...,6,4,2,0  =z (corresponding to the same phase: here, referring 

to positive maximum value of the quantity)

Interval of z between two consecutive same phases at a fixed time
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...,6,4,2,0  =t (corresponding to the same phase: here, referring 

to positive maximum value of the quantity)

Interval of t between two consecutive same phases at a fixed time
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

2
=T





2

1
==

T
f (wave circular frequency or simply frequency)

f 2= (wave circular frequency or simply frequency)



f
v

2
ph =






2
=

fv =ph (relation between phase velocity, frequency and wavelength) 



1313

Wave equations in electric and magnetic fields

 
t

H
E




−=





















+=




−=

t

E
JH

t

H
E









  

Electric and magnetic fields are coupled in the following two Maxwell’s equations:
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In order to decouple these two equations to obtain a single equation, namely wave 

equation in electric field, take the curl operation on the first of these equations and 

read it using the second of these equations.    

(Maxwell’s equations recalled)

Wave equation in electric field
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Rearranged

(wave equation in electric field)
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derivatives in space coordinates are interchangeable 

(vector identity)
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In order to decouple these two equations to obtain a single equation, namely wave 

equation in magnetic field, take the curl operation on the second of these equations 

and read it using the first of these equations.    

(Maxwell’s equations recalled)

Wave equation in magnetic field
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(wave equation in magnetic field)

Wave propagation through a Free-space medium
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Consider a uniform plane wave propagating through an unbounded free-space medium. 

(source-free wave 

equations in electric and 

magnetic fields)
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Formulate the problem by considering wave 

propagation along  z in the rectangular coordinate 

system. 

A plane wave has a plane wavefront. A wave 

front is an equi-phase surface over which the 

phase of the quantity associated with the wave 

remains constant. For a uniform plane wave, in 

addition to the phase, the amplitude of the 

quantity associated with the wave also remains 

constant over the plane wavefront. 
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For a uniform plane wave propagating along z 
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0
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2
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



t

Ez 0
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2
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



t

H z
Integrating

A
t

Ez =




BAtEz +=

C
t

H z =




DCtH z +=

Integrating

tDCBA  with constants are  ,,,

Ez and Hz are each constant with z and that they are linearly dependent  on t.

(linearly dependent on t) (linearly dependent on t)
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z

z

H

E

A uniform plane wave propagating through an unbounded free-space medium is 

essentially a transverse electromagnetic wave (TEM) with no electric and 

magnetic field components in the direction of propagation (along z) 

Contradicts with the dependence of these quantities as exp j(t-z/v) (for a forward wave 

in free space considered) with non-zero values of the constants A, B, C and D. 

Avoidance of contradiction

0==== DCBA
BAtEz += DCtH z +=
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A uniform plane wave propagating 

through an unbounded free-space 

medium is essentially a transverse 

electromagnetic wave (TEM) with no 

electric and magnetic field components 

in the direction of propagation (along z) 
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Unbounded free-space medium supports transverse electromagnetic 

(TEM) wave, such that the directions of the electric field, magnetic 

field and propagation are mutually perpendicular to one another, 

propagating with phase velocity equal to the speed of light c:
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cv ===
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

m/s 103
1 8

00
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cH/m 104 7

0

−=  F/m 19854.810)36/(1 129
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−− == 

Intrinsic impedance 0 of the free-space medium is
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)(rewritten  0
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(intrinsic impedance of a free-space medium)
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Wave propagation through a 

conducting medium
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(wave equation in electric field)
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Let us recall wave equation in electric field:
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EE
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(for a uniform plane wave 

propagating along z) 













+==




+==




yy

y

xx
x

EjjE
z

E

EjjE
z

E

)(

)(

2

2

2

2

2

2





)(  jj +=

 is called the propagation 

constant of the wave
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(solution for a forward wave) (subscript 0 referring to field amplitudes)
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Skin depth
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 jjj +=+= )( (recalled)

Invoking time 

dependence exp(jt) 
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Amplitude exponentially attenuates as  )exp( z−

 

For a good conductor: 

 jj +==
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Separate real and imaginary parts Squaring 

 jj +== (for a good conductor) 

 22)()( 22222

0 jjjjj +−=++=+=

Equating imaginary partEquating real part

022 =−   20 =

 =

2

0
 ==

)(  

)(  (for a good conductor) 
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0
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)(  (for a good conductor) 
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Amplitude exponentially attenuates as  )exp( z−

Taking = 1/, the exponential attenuating factor of the field 

amplitude may be put as

)/exp()exp(  zz −=−

Putting  z =  , we appreciate that the field amplitude at the surface 

(skin) of a good conductor at z = 0 attenuates by a factor of exp (-1) = 

1/e at a depth equal to z =  called the skin depth of the conductor. 

 /1=

 /1=
2

0
 =




0

2
= (skin depth)
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


0

2
= (skin depth) f 2=




0

1

f
= Skin depth decreases with the increase of the conductivity of 

the medium and operating frequency 
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
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)(
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0






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2

1
== Skin depth is directly proportional to the wavelength in 

the conducting medium. 

Typically, for copper ( = 5.8x107 mho/m), at operating frequency  50 Hz, 

the value of the skin depth  is ~ 9.4 mm. 

The skin depths are ~ 2.1 mm, ~ 66.1  m, and  ~ 2.1  m, for frequencies    

1 kHz, 1 MHz, and 1 GHz, respectively. For 10 GHz frequency, we find  the 

skin depth as 6.61x10-7 m, which happens to be in the range of wavelength  

of visible light.  
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Surface resistance and ac resistance

(recalled)   )(exp0 zjEE yy  +−=

(RF time dependence jt understood)

Let us recall the expression for electric field intensity at depth z from 

the surface of the conductor:

=0yE Electric field intensity amplitude at the surface of the conductor 
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J

Infinitesimal strip

(area = Wdz) 

z

0E

(Free space 

medium)

(Conducting 

medium)

)exp()(exp0 tjzjEE yy  +−=
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Current density along y at depth z from the surface 

of the conductor  

]][)(exp[ 0 WdzzjEy  +−=
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



j

Ey

+
=

0

X

Y

Z

W

J

Infinitesimal strip

(area = Wdz) 

z

0E

(Free space 

medium)

(Conducting 

medium)

Ey0 = E0



34

Surface impedance Zs is defined as

 widthunit'' ofconductor  entire rough theCurrent th

conductor  theof surface at thelength  unit''per  drop Potential
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Rs = Surface resistance ( or / )

Xs = Surface reactance ( or  / )
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0yE

Comparing the real and imaginary parts
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Expression for the dc resistance Rdc of a wire 

of length l and radius a is well known:  

ac resistance of a straight conducting wire:

We can find the ac resistance of a straight round wire (that is, of circular 

cross section) made of a good conductor at high frequencies and compare it 

with its dc resistance to show that the ac-to-DC resistance ratio of the wire 

is a/2, where a is the radius of the wire and  is the skin depth of the 

conductor making the wire. 

2dc

1

a

l
R


=

Let us next proceed to find an expression for the ac resistance 

Rac of the wire using the same approach as used to find the 

surface resistance. 
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For a round wire of radius a large compared to the skin depth , a point inside the 

wire where the electric field is significant will not ‘see’ the curvature of the round 

wire and therefore we can take the surface of the wire as a planar surface.    

Current through the wire of width W = 2a

)2(
0

a
j

Ey






+
=

Therefore, following exactly the same approach as used to find the surface 

resistance of a planar conductor we can find the resistance of the round wire 

interpreting the width as the circumference of the wire (W = 2a).
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J

Infinitesimal strip

(area = Wdz) 
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(Free space 

medium)

(Conducting 

medium)
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Potential drop across length l at the 

surface of the wire 
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

Separated in the real part Rac, which is the ac resistance of the wire, and 

the imaginary part Xac, which is the ac reactance of the wire 
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2dc
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Since the wire radius a>>, skin depth, the 

wire ac resistance Rac>>Rdc, the wire dc 

resistance



38

ac resistance per unit length of a coaxial cable:

We can find the ac resistance of a coaxial cable made of a central solid round conductor and 

a coaxial annular conductor surrounding it with a dielectric medium filling the region between 

the conductors by extending the analysis presented for a straight round wire. For a good 

conductor making the coaxial cable and at high frequencies, as in the case of a straight wire, 

we can treat the inner and outer conductors behave as a planar surface. 

(ac resistance of a coaxial cable of length l)

,

a

l
R

 2

1
ac = (recalled expression for the ac resistance of length l of a straight round wire)

a

l
R

 2

1
ac =

Concept of finding the ac resistance of a straight wire extended to the 

inner conductor of radius a and to the outer conductor of radius b

(ac resistance 

contributed by the inner 

conductor of length l)

b

l
R

 2

1
ac =

(ac resistance 

contributed by the outer 

conductor of length l)
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Wave propagation through sea water

Maxwell’s equations (recalled):

The objective of the study is to find out which frequencies of operation (lower ~ 10 

kHz or higher ~ 10 GHz) should be preferred from the standpoint of a lower 

attenuation of the wave propagating through sea water.  
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0 (Maxwell’s equations)

(Maxwell’s equations)

Partial time derivative and curl involving partial 

derivatives with respect to space coordinates are 

interchangeable
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Let us examine two situations: one for >> and the other for << with reference 

to sea-water communication.

 water)(sea  
mho/m4

m/F10854.88181 12

0





=

== −





(uniform plane wave supposedly propagating along z)
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Propagation at lower frequencies

)exp()exp(ˆ)](exp[ˆ)exp(ˆ
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Two  alternative ways of putting the propagation constant 

)(typically  Hz1010kHz10 3==f

)(typically  Hz1010kHz10 3==f





 j

j
j +=+= )1(0

Let us recall the following expression at 

lower frequencies:
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(recalled at lower frequencies)
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parts)imaginary  and real  theg(separatin  0  jj +==

partsimaginary  and real  theSeparating

Ignoring the second term under the radical)

(recalled)

(obtained by separating the real and imaginary parts)

(subscript ‘lf’ referring to lower frequencies) 
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Propagation at higher frequencies

Let us recall the following expression at 

higher frequencies:

)(typically  Hz1010GHz10 9==f
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Expanding binomially and ignoring higher order terms

(subscript ‘hf’ referring to quantities at higher frequencies) 
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Lower attenuation at lower frequencies than at higher frequencies
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 ==== m15

Lower frequencies are preferred to higher frequencies for sea-water 

communication for lower attenuation as well as for a reasonable 

antenna size typically of the order of half wavelength in sea water (as 

compared to the corresponding antenna size in free space).
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Plasma oscillation

Refractive index of ionosphere

Space-charge waves on an electron beam

Cyclotron waves on an electron beam

Wave propagation in a 

medium of charged particles
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Consider an ensemble of electrons and positive ions maintaining overall charge neutrality

Consider the physical displacement (perturbation) of electrons (which are much more 

mobile than positive ions) from their equilibrium position to a small extent 

Space-charge electric field in the direction of the displacement of negatively 

charged electrons providing a restoring force

Overshoot of electrons

Restoring force again coming into play

Oscillation of electrons about their mean position at the natural angular 

frequency― electron plasma frequency.





Displacement of electron layers by 

an amount  and the resulting 

space-charge restoring force

Plasma oscillation
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Displacement of electron layers by 

an amount  and the resulting 

space-charge restoring force

s = surface charge density

0 = volume charge density

 = cross-sectional area 

perpendicular to displacement

(before perturbation) (after perturbation)

(electric field due to 

positive-end layer)

(force equation)

me /=

(electric field due to 

negative-end layer)
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d

dt
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2
 = − )(
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
 =p

)exp()exp( tjBtjA pp  −+=

tBAjtBAtjtBtjtA pppppp  sin)(cos)()sin(cos)sin(cos −++=−++=

tDtC pp  sincos +=

tD p sin=

0at    0 == t 0=C

Set

Solving

(A and B are constants)

(C = A+B and D = j(A-B) are constants)

Solution indicating that the electrons oscillate about their mean 

position with an angular frequency of oscillation p called the 

plasma frequency (electron):

0

0




 =p
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The ionosphere is located at the heights of 50-300 km from the earth.

The ionosphere consists of electrons and ions

The ionization in the ionosphere is caused by solar radiation (ultraviolet, soft X-ray, -particle (helium 

atoms from which the electrons are knocked off), etc.)

The sky-wave propagation utilizes the phenomenon of total internal reflection from the ionosphere, 

which, in turn, is dependent on the value of its refractive index. 

We can find value of the refractive index of the ionosphere by studying the interaction of 

electromagnetic waves with the ionosphere. 

Refractive index of ionosphere

The current density in a medium constituted by charged particles in a free- space medium 

consists of the convection current density (unlike the conduction current density in a conducting 

medium) and the displacement current density. 

t

D
J




+=




densitycurrent  Convection 

t

D
vJ




+=




 

The relation between the convection 

current density J, volume charge density 
and velocity v of charged particles 

(electrons) has been obtained earlier (in 

Chapter 3 while studying Child-

Langmuir’s law) as: 

.vJ =

vJ


=

We can write the relation in vector form as
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Perturbed electron current density in the 

ionosphere under the influence of an 

interactive electromagnetic wave

Perturbed convection current density 

obtainable from the relation J = v 

(electrons not having a dc beam 

velocity unlike in an electron beam)

Displacement current density

Time dependence as tjexp

EjvJ
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Force equation:

(current density equation)

Current density equation:
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Current density equation

Space-charge waves on an electron beam

It is of interest to study the interaction of electromagnetic waves with a charge flow, for instance, 

a beam of electrons, which is a constituent of  many practical electron devices such as vacuum 

electron devices like microwave tubes and charge accelerators. We are going to show that an 

electron beam supports two space-charge waves. Coupling of space-charge waves with 

electromagnetic waves is of relevance to understanding the behaviour of practical electron 

devices. Our study will be restricted here to finding the phase velocities of space-charge waves 

supported by an electron beam. 


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000
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10

vJ

vvv

JJJ
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

vJ = (convection current density)

Subscript 0 refers to unperturbed quantities 

Subscript 1 refers to perturbed quantities 

11011000101010 ))(( vvvvvvJJ  +++=++=+

100 vJ =

Let us consider a large cross-sectional area of the 

electron beam perpendicular to the beam flow along z 

over which the beam velocity v, volume charge 

density  and current density J remain constant:
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One-dimensional beam flow 
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(continuity equation)

1101101 vvvJ  ++=

Taking perturbed quantities much smaller than unperturbed quantities 

so that we can ignore the product of perturbed quantities 1v1

Taking partial derivative with respect to z

(to be recalled later in the analysis)
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Force equation Space-charge electric field was introduced in course of the deduction 

of electron plasma frequency of oscillation in a space-charge 

neutralised medium consisting of electrons and relatively immobile 

positive ions. In an ideal vacuum, it is not possible for electrons to 

move to form  an electron beam because of mutual repulsive force 

between the advancing and the following electrons. However, in a 

practical vacuum electron beam device like a microwave tube where 

the vacuum is not ideal, the presence of charge neutralising positive 

ions makes it possible for the electrons to move and form an electron 

beam. The space-charge field Es comes into play for any perturbation 

in the position of electrons from their equilibrium position. 

(ignoring higher order term, 

being the product of 

perturbed quantities: zvv  /11

(to be recalled later in the analysis)
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(recalled)

Performing D operation z
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(recalled)

(/z, partial derivative with respect to z, and D involving /z. partial derivative with respect 

to z, and /t, partial derivative with respect to t, being interchangeable) 

(following from Maxwell’s equation:                   )
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(for a uniform plane wave propagating along z:                           )0// == yx
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Cyclotron waves on an electron beam

An electron beam supports cyclotron waves in the presence of a dc magnetic field in the 

direction of beam flow, provided there also exist the components of beam velocity transverse to 

the magnetic field. The interaction of electromagnetic waves with an electron beam supporting 

cyclotron waves forms the basis of understanding the behaviour of electron beam devices such 

as the gyrotron for the generation of electromagnetic waves in the millimetre-wave frequency 

range, which finds application in industrial heating, material processing, plasma heating for 

thermonuclear power generation as well as in domestic microwave ovens.  

Let us consider the electron beam along z and a uniform dc magnetic field present in the 

region of beam flow, also along z. The components of Lorentz forces exist transverse to the 

longitudinal magnetic field.  Let us treat the problem in rectangular system of coordinates 

for a large cross-sectional area of the beam perpendicular to the axis of the beam and 

magnetic field (that is perpendicular to z direction) 
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(Dispersion relation for cyclotron waves)
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(Dispersion relation for cyclotron waves)
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Space-charge and cyclotron waves
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Summarising Notes

✓Wave equations⎯one in electric field and the other in magnetic field⎯have 

been derived with the help of those two Maxwell’s equations in which these field 

quantities are coupled.  

✓Solutions to the wave equations in electric and magnetic fields have been 

obtained for uniform, plane electromagnetic waves propagating through an 

unbounded free-space medium. 

✓With the help of Maxwell’s equations and the solutions to wave equations in 

electric and magnetic fields, it has been established, with reference to uniform, 

plane electromagnetic waves propagating through an unbounded free-space 

medium, that 

 there exists no components of electric and magnetic fields in the 

direction of propagation;

 directions of the electric field, magnetic field and wave propagation 

are mutually perpendicular to one another; 

 transverse electromagnetic (TEM) mode of propagation is 

supported by the unbounded medium; 

 intrinsic impedance and phase velocity of the wave are each 

related to the permeability and the permittivity of free space, the wave 

phase velocity being the speed of light c.
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✓Concepts of the skin depth, surface resistance and ac or RF resistance of a medium 

have been developed by studying the propagation of uniform, plane electromagnetic 

waves propagating through a semi-infinite conducting medium, considering such waves 

to be incident from a free-space region to a planar conducting surface extending to 

infinity.

✓Ratio of the ac or RF resistance to dc resistance of a conducting wire of circular cross 

section becomes equal to the ratio of wire radius to twice skin depth, considering the 

wire to be of high conductivity and/or wave frequencies to be very high such that the skin 

depth of the conductor becomes small enough compared to the wire radius to make the 

planar conductor approximation for the conducting wire of circular cross section.

✓ Lower frequencies, say, ~10 kHz is preferred to higher frequencies, say, ~10 GHz, in 

view of comparatively lower attenuation of waves at such lower frequencies for sea-

water communication as revealed by studying propagation through unbounded sea-

water of finite conductivity and permittivity. 

✓ Study of wave propagation through a medium of charged particles give the concepts 

of sky-wave propagations through ionosphere as well as those of space-charge waves 

and cyclotron waves on an electron beam.

Readers are encouraged to go through Chapter 6 

of the book for more topics and more worked-out 

examples and review questions. 


