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Engineering Electromagnetics Essentials

Chapter 5

Basic concepts of time-varying 

electric and magnetic fields
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Development of concepts in time varying electric and magnetic fields

Continuity equation and relaxation time

Faraday’s law in integral and differential forms

Electromagnetic induction

Appreciation of coupling between electric and magnetic fields

Displacement current

Maxwell’s equations in integral and differential forms

Relation between electric and magnetic fields in time-varying situations

Lorentz condition and wave equations in electric scalar and magnetic vector 

potentials as well as their solutions keeping in view their potential 

applications

Vector calculus expressions developed in Chapter 2

Basic concepts of static electric and magnetic fields developed in Chapters 

3 and 4 respectively
2

Objective

Topics dealt with

Background
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Consider a flow of electrical charge through a region that constitutes a 

dc electric current. 

Surround a point in the region of charge flow with a closed volume. 

Flux of current density vector through the surface area S constitutes the 

current flowing out through the surface enclosure : 

 ===
S

n

S

dSaJSdJ


..ctordensity vecurrent  ofFlux Current

For dc current (not varying with time), the charge flowing into the volume 

enclosure must be equal to the charge flowing out giving

What is the corresponding finding for ac current 

(varying with time)?

0. =
S

n dSaJ


ctor)density vecurrent  ( =J


3

Continuity equation
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Consider a flow of electrical charge through a region that constitutes an 

ac electric current. 

For ac current (varying with time), the charge flowing into the volume enclosure is 

not equal to the charge flowing out.

The amount of charge in the volume enclosure must decrease with time if the 

amount of outflow of charge exceeds that of inflow, while the amount of charge in 

the volume enclosure must increase with time if the amount of charge inflow 

exceeds that of charge outflow.

For a time-varying (ac) current, equate the flux of current density vector through the 

volume enclosure, interpreted as the flux going out of the volume, to the negative time 

rate of change of charge Q in the volume:

dt

dQ
dSaJJ

S

n −== 


.  ofFlux 
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dt

dQ
dSaJJ

S

n −== 


.  ofFlux 

For a positive value of the flux of current density (left 

hand side), dQ/dt (time rate of change of charge within 

the enclosure) in the right hand side has to be negative 

corresponding to a decrease in charge within the 

enclosure. 

=


 dQ

 −=


d
dt

d
dSaJ

S

n


.

Choose the surface area of the volume enclosing the 

charge to be constant. Since the integral on the right 

hand side is convergent, we may replace the complete 

derivative in the right hand side by its partial derivative 

and put it under the definite integral 


−=





d
t

dsaJ
S

n


.

( Is the volume charge density)
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 


−=





d
t

dsaJ
S

n


.





−






d
t

dsaJ
S

n


.

If we take the volume element to be an infinitesimal volume 

, we may regard the volume charge density  to be 

approximately constant within the infinitesimal volume and 

take its time derivative outside the integral.

This approximation leads to putting the sign of equality as 

the sign of approximate equality. 

t

dsaJ
S

n






−







.








− t

dsaJ
S

n


.
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t

dsaJ
S

n






−







.

The relation becomes exact if the volume element  shrinks 

to zero, making it more reasonable to assume the volume 

charge density to be constant within the volume enclosure .

t

dsaJ
Lt

S

n






−=

→




.

0
By definition the left hand side is the divergence of 

current density: J


.

t
J




−=


.

0. =



+
t

J


(continuity equation)
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Relaxation time is a measure of how fast or slow a medium of uniform 

conductivity and permittivity approaches electrostatic equilibrium. 

Continuity equation Poisson’s equation Ohm’s law

Relaxation time

0. =



+
t

J


EJ


=

0).( =



+
t

E





8

Conductivity is uniform in the medium




= E



0)( =



+
t












−=





t

Relaxation time
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



−=





t

 −= dt
d









constantln +−= t





 lnln 0



 +−= t

 lnconstant 0=

We tacitly choose constant 

in terms of another constant   0

 lnln 0 t



 −=−

 ln
0

t







−=
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 ln
0

t







−=









−= t







exp

0









−= t



 exp0











−=
t

exp0






 0   timeRelaxation rΤ ==

For very large values of 

relaxation time T















→

→









−

→


−

0

1exp

0



t

t

For very small values of 

relaxation time T















→

→









−

−→


−

0

0exp



t

t
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For very large values of 

relaxation time T

















→

→









−

→


−

==

0

0

1exp

0











t

t

r

For very small values of 

relaxation time T

















→

→









−

−→


−

==

0

0exp

0











t

t

r

For a dielectric medium, the value of conductivity  is very small that 

renders T a very large value. This makes the volume charge density  in 

the bulk of the dielectric tend to 0 (equilibrium volume charge density). 

Therefore, within a time of interest t, the bulk of a dielectric medium can 

be charged with the equilibrium volume charge density (0). 

On the other hand, for a medium of good conductivity, the value of 

conductivity  is very large that renders T a very small value. This makes 

the volume charge density  in the bulk of the dielectric tend to 0. Thus, 

the bulk of a medium of a good conductor cannot be charged; any charge 

injected into such a medium of good conductivity will not stay long within 

the bulk of the conductor only to reappear at the outer surface of the 

conducting medium in compliance with the requirement of  the 

conservation of charge. 
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Conductivity, permittivity, and 

relaxation time of typical 

medium materials

Medium 

material


(mho/m)

r T=r0/

Copper 5.8107 1 1.510-19 s

Sea-water 4 81 210-10 s

Corn oil 510-4 3.1 0.55 s 

Mica 10-15 5.8 ~1/2 a day

Quartz 

(fused)
10-17 5 ~50 days

The concept of the relaxation time is very useful in understanding the 

electromagnetic boundary conditions at the interface between two 

dielectrics as well as those at the interface between a conductor and a 

dielectric. 
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Faraday’s law relates the time rate of change of magnetic flux linked with a closed 

circuit with an electromotive force (EMF) induced in the circuit. 

R
i inducedEE +
=

Electromagnetic force (EMF) is a measure of the capability of a source of energy to 

drive an electric charge around a circuit, that is, generate a circuit current; it is 

estimated as the energy per unit charge that is imparted by the energy source. The 

unit of EMF is, therefore, that of potential, that is, volt or V.

Electromagnetic force (EMF)

Faraday’s law

(Faraday’s law)





=

=

circuit in the induced EMF 

source  theof EMF 

inducedE

E

circuit   theof Resitance=R

Time-varying magnetic field 

and Faraday’s law of electromagnetic induction
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circuit  with thelikneddensity flux magntic ofFlux  =B

dt

d B−=inducedE

R

dt

d

i

B−

=

E

R
i inducedEE +
=

(Faraday’s law)





=

=

circuit in the induced EMF 

source  theof EMF 

inducedE

E

circuit   theof Resitance=R

We can also express Faraday’s law  in the following form

R
i inducedEE +
=

(Faraday’s law)

How can we appreciate

dt

d B−=inducedE ?
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How can we appreciate

dt

d B−=inducedE ?

X

Z
Y

Pair of conducting 

rails

EMF 

Source

In order to appreciate that the induced voltage is the negative time 

derivative of magnetic flux linked with a circuit, as it is given by the 

above expression, let us consider a conducting rod which is free to 

slide on a pair of transverse conducting rails, the whole immersed in 

a uniform steady normal magnetic field while a current passes 

through the circuit from a source of electromagnetic force.

The force due to the applied magnetic field on the conducting rod carrying 

current supplied by a source of EMF causes a motion of the conducting rod on 

the pair of conducting rails. 

The energy supplied by the source of EMF is balanced by the energy that is 

spent in doing work to move the conducting rod plus the energy that is lost in 

the circuit resistance. 

Let the rod, rail and circuit lie on ZX plane and the magnetic field be applied 

along y direction.   
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X

Z
Y

Pair of conducting 

rails

EMF 

Source

The energy supplied by the source of EMF is balanced by the energy that is spent in 

doing work to move the conducting rod plus the energy that is lost in the circuit 

resistance. 

21 )()( WWW +=

tiQ

ti

W

=



=

 charge          

 sother wordin or   in time current circuit           

 supplyingfor  EMF of source by thespent energy 

tR

W



=

 in time   resistance              

circuit   the toduelost energy )( 1

tz
F

W



=

 in time  distance ofelement an gh      throu          
 field magnetic  the todue rod on the   force by the               

 rod  themove  work todoingin spent energy )( 2 

tiQW == EE

tiQ =

tRiW = 2

1)(

zazFW


= 2)(

zazFtRiti


+= 2
E

BliBldiF


== 

rod) conducting in the x along being flow(current  xall


=
yaBB


=

zyxyx ailBaailBaBaliBliBldiF


=====  )()()(

zilBtRiazailBtRiazFtRiti zzz +=+=+= 222 )()(


E

circuit by the dintercepte rod  theoflength  =l
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zilBtRiazailBtRiazFtRiti zzz +=+=+= 222 )()(


E

zilBtRiti += 2
E

t

z
BliR



+=E

tiby  Divide

R

t

z
Bl

i 


−

=

E

X

Z
Y

Pair of conducting 

rails

EMF 

Source

yaBB


=

yn aa


=

zlS =

SaB nB =




t

z
lB

t

B




=





  zailBF


=

The rod moves an infinitesimal distance z 

in infinitesimal time t due to the force on it 

due to magnetic field along z:   

This cause an increase in the area of 

the circuit by  

Consequently, this causes an increase 

in flux of magnetic flux density  

SBSaaBSaB yynB === )()(




zlS =

zBlSBB ==
R

ti

B




−

=


E

which becomes in the limit for 

instantaneous current 0→t

R

dt

d

i

B−

=

E

(Faraday’s law)
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R

dt

d

i

B−

=

E

X

Z
Y

Pair of conducting 

rails

EMF 

Source

dt

d B−=inducedE

R
i inducedEE +
=

(Faraday’s law)

(Faraday’s law)

While formulating the problem, we have assumed the current flow to be in positive x 

direction, causing a movement of the rod in positive z direction resulting in an increase 

in the area of the circuit, and consequently, an increase in the magnetic flux linked with 

the circuit that makes dB/dt positive. You can then appreciate that if the direction of 

either the current or the magnetic field are reversed, then the force on the rod and its 

movement will also reverse and the circuit area as well as the magnetic flux linked with 

the circuit will decrease, thereby making dB/dt negative. Therefore, in general, we can 

write

(Faraday’s law)


















−=

−

=

+
=

dt

d

R

dt

d

i

R
i

B

B





induced

induced

E

E

EE

(Faraday’s law)
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Lenz’s law


















−=

−

=

+
=

dt

d

R

dt

d

i

R
i

B

B





induced

induced

E

E

EE

(Faraday’s law)

You can recapitulate, referring to the example of the current carrying conducting rod on 

rail in a magnetic field dealt with, and with the help of the above expression for 

Faraday’s law, that the circuit current decreases due to electromagnetic induction. 

Consequently, this would reduce the force on the conducting rod and oppose its 

movement that causes a change in the circuit area. This in turn would reduce the 

change in magnetic flux linked with the circuit responsible for electromagnetic induction. 

The phenomenon demonstrated in this finding is known as Lenz’s law, according to 

which electromagnetic induction takes place such that it opposes the cause to which it 

is due; in this example, the cause is the movement of the rod which is opposed by the 

effect of the decrease of current in the rod due to electromagnetic induction. 
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Simple examples of the application of 

Faraday’s law 

In an example to illustrate Faraday’s law consider a straight conducting rod of a 

given length that moves parallel to its length with a given velocity on a plane 

perpendicular to a given magnetic flux density of a uniform magnetic field 

region, and hence obtain an expression for the amount of voltage developed 

across the length of the rod, with the help of Faradays law, as follows. 

tz =   timemalinfinitesiin  rod by the  traverseddistance malinfinitesi 

(given) 

 )(magnitudedensity flux  magnetic 

rod  theof velocity 

rod  theoflength  









=

=

=

B

v

l

Element of magnetic flux B through the element of area lz is obtained by 

multiplying the element of area by the magnitude of magnetic flux density B as 

tzl =   timemalinfinitesiin   rod by the  tracedarea malinfinitesi 

zBlB =
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Blv
t

z
LtBl

t

zBl
Lt

t
Lt

dt

d

t

t
B

t
B

=











=




=




==

→

→→

0

00

                                           

 voltageinduced ofAmount 


(expression for the amount of voltage developed across the length of the rod)

zBlB =

t

z
Bl

t

B




=




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In another illustration to exemplify Faraday’s law, let 

us find an expression for the amount of voltage 

developed at the rim with respect to that at the axis 

or axle of a conducting disc, called Faraday disc, 

rotating in a region of magnetic field is perpendicular 

to the disc. We can find the desired expression with 

the help of the preceding example as follows.

Faraday disc

Y

X

ω

dr

rdrBrBdr

dr

 == length) rod of

(element  across developed  voltageofElement 

  2/2/

axle and rim ebetween th  voltageinduced ofAmount 

2

0

2

00

aBrBrdrBrdrB
a

aa

 ==== 

Element of voltage developed along an element of radial 

rod length dr considered at a radial distance r from the 

axis of the disc, will be Bdrv, where v is the velocity of the 

element of radial rod length (so found with the help of the 

result of the preceding example). In view of the relation v = 

r, where  is the angular velocity of rotation of the disc, 

we can then write

Integrating between the axle at r = 0 and the rim at r 

= a of the disc of radius a

(expression for the voltage developed at the rim of the disc with respect to that at its axle) 
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ldFdW


=

EqF


=

moved is  charge test hein which tdirection   theisdirection  whose
 magnitude ofcircuit  on thetor length vec ofelement  
q
dlld =



  ===
l ll

ldEqldEqdWW


The induced EMF in a circuit sets up an induced current, which can be 

attributed to a flow of charge in an induced electric field 

If we move a test point charge q round the closed path coinciding with the 

circuit, the element of work done dW on the charge in moving it through 

an element of length dl of the path may be written as 

E


,

EqF


 field electric induced  todue  charge test aon  force =

ldEqdW


=

Integrating round the closed circuit

(work done in moving the charge q 

round the circuit)

Integral form of Faraday’s law
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inducedEqldEq
l

=


 =
l

ldE


inducedE

dt

d
ldE B

l


−=



  ===
l ll

ldEqldEqdWW


inducedEqW =

(work done in moving the charge q round the circuit)

W may also be equated to the energy imparted by the induced EMF to the 

charge q as 

comparing

dt

d B−=inducedE (Faraday’s law) (obtained earlier)

comparing

(Faraday’s law)
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dSaB
S

nB  =




dSaB
dt

d
ldE

S

n

l

 −=


dt

d
ldE B

l


−=



dSa
t

B
ldE

S

n

l

 



−=






In situations where the area  remains constant and the 

magnetic flux density  varies with time, we can replace 

the total time-derivative on the right-hand side by the 

partial derivative and put it under a convergent, 

definite integral. 

(Faraday’s law)
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
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





dSa
t

B
ldE

dSaB
dt

d
ldE

dt

d
ldE

S

n

l

S

n

l

B

l








 

Faraday’s law in integral form expressed in different 

ways may be put together as follows:

dt

d B−=inducedE (Faraday’s law)

(Faraday’s law in integral form)

That electric and magnetic fields are coupled in time-varying phenomena 

is evident from Faraday’s law. 
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We have earlier derived from first principles (in Chapter 4) the differential form of 

Ampere’s circuital law from its integral form. On the same line, we can also obtain the 

differential form of Faraday’s law from its integral form. In fact, we need not now repeat 

the derivation once we identify the analogous quantities in Ampere’s circuital and 

Faraday’s laws. Let us see how this can be done. 

 =
l

ildH


(Ampere’s circuital law)

Let us recall (from Chapter 4) Ampere’s circuital law as follows: 

 =
S

n dSaJi


 =
S

n

l

dSaJldH


Let us recall Faraday’s law as follows: 

dSa
t

B
dSa

t

B
ldE

S

n

S

n

l

 



−=




−=








(Faraday’s law)

comparing

t

B
J

HE




−






  toanalogous is and 

 and   toanalogous is 

(Ampere’s circuital law)

Differential form of Faraday’s law
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 =
S

n

l

dSaJldH


(Ampere’s circuital law)

dSa
t

B
dSa

t

B
ldE

S

n

S

n

l

 



−=




−=









(Faraday’s law)

Comparing the two laws we have already identified the analogous quantities:

t

B
JHE




−




  toanalogous is and   and   toanalogous is 

We have already derived (in Chapter 4)

 ==
S

n

l

dSaJldHJH


   from   

Therefore, without repeating the derivation we can write analogously

dSa
t

B
ldE

t

B
E

S

n

l

 



−=




−=








   from   

t

B
E




−=




(Faraday’s law in differential form)

That electric and magnetic fields are coupled in time-varying phenomena is evident 

from the association of electric field with time-varying magnetic field given by 

integral or differential form of Faraday’s law. 

Furthermore, magnetic field is also associated with time-varying electric field, 

which however is not given by Faraday’s law and which can be appreciated from 

the concept of displacement current to follow.  
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Let us see how magnetic field is associated with a time-varying electric field. 

0. =



+
t

J


(continuity equation)

0. =



+ D
t

J


= D


(Poisson’s equation)

The partial time-derivative and the divergence, which 

involves partial derivatives with respect to space/angle 

coordinates, are interchangeable.  

0. =



+
t

D
J




0)(. =



+
t

D
J




(obeying continuity equation)

ntdisplaceme electric =D


Time-varying electric field and 

Displacement Current
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0)(. =



+
t

D
J


 (obeying 

continuity 

equation)

JH


=
(Ampere’s circuital 

law in differential form) 
Divergence of 

curl of a vector 

quantity is zero 

0)(. = H


JH


.).( =

0. = J


conflicting with

If we replace 

JH


=

with 

t

D
JH




+=




0)(.)(. =



+=
t

D
JH




No conflict

Thus, we get the differential form of Ampere’s circuital law that is 

consistent with the continuity equation in time-varying situations as 

t

D
JH




+=



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t

D
JH




+=




(differential form of Ampere’s circuital law that is 

consistent with the continuity equation in time-

varying situations) 

=J


(showing how magnetic field is associated 

with time varying electric field)

)( ED


=

Conduction current density or convection current 

density due to the flow of charge in a medium 

depending on whether the medium is a conductor or 

free space 

=




t

D


Displacement current density not constituted by the 

flow of charge in a free-space or a dielectric medium 

if, with time, there is a variation of electric field hence 

electric displacement

)( ED


=

Thus, the displacement current density in a medium is given 

by the partial derivative of electric displacement with time for 

a time-varying electric field. 
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A capacitor blocks dc current but allows ac current to pass through it. 

The ac current through a capacitor is the displacement current 

caused by time-varying electric field in the capacitor due to an ac 

voltage applied on it.  

Let us appreciate with reference to the example of a parallel-plate capacitor that the 

current density in the capacitor is equal to the displacement current density.

capacitorrough current th capacitor ==
dt

dQ
i

platesbetween  difference potential =V

dt

dV
C

dt

dQ
i ==capacitor

platesbetween  field electric ==
d

V
E

dt

dE
Cdi =capacitor

 ecapacitanc =C
CVQ =

EdV =

d

A
C


=

area plate =A

platesbetween  distance =d

platesbetween  medium  theofty permittivi  =

dt

dE
Ai =capacitor

ED =

dt

dD
Ai =capacitor

dt

dD

A

i
J ==

capacitor

capacitor
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dt

dD

A

i
J ==

capacitor

capacitor

Displacement current density is given by 

t

D
J




=ntdisplaceme

(capacitor current density)

Within the capacitor the electric field and  

electric displacement are each 

independent of space coordinates. 

Replacing the partial derivative with 

complete derivative we then have

dt

dD
J =ntdisplaceme

comparing

ntdisplacemecapacitor JJ =

(Capacitor current density is thus identified as the displacement 

current density) 
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t

D
EJ




+=






ED


=
t

E
EJ




+=






EjEJ


 +=

EjjE
j

jEjEJ










−=








+=+=











Current through an imperfect or lossy dielectric comprises conduction and 

displacement currents.

Conduction current density Displacement current density





jt

tj

 /

,exp  dependence  timegConsiderin

Complex  permittivity  and 

loss  tangent 
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Real Axis

Imaginary 

Axis

j E

E



EjjJ










−=






EjjJ


)(  −=












 ==




=

/
tan




 =

 =

EjJ


*=

 *  −= j Complex permittivity  *

EjEJ


 +=

Conduction 

current density
Displacement 

current density

Phasor diagram

(current density in terms of electric field and complex permittivity) 

is the angle by which the 

current density in an 

imperfect dielectric          

falls short of leading the 

electric field by the phase 

angle of



)0( 

2/

(Loss tangent)



36

James Clerk Maxwell originally gave as many as 

twenty equations in twenty variables; it was Oliver 

Heaviside, who is one of the founders of vector 

calculus, who reduced these equations to four 

equations. 

Several disciplines hang as gems on one priceless necklace which it was 

Maxwell’s privilege and honour to recognize as capricious Nature’s enduring 

ornament

⎯ P. Khastagir

“Apologia,” Seminar on Electromagnetics and their applications, 22-23 

December 1988, Varanasi, India

Simple enough to imprint on a T-shirt and yet rich enough to provide new insights 

throughout a lifetime of study ⎯ J.R. Whinnery

“The teaching of electromagnetics”, IEEE Trans. Education ED-33 (1990) p.327

Maxwell’s equations
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Maxwell’s equations

We may recall the following four equations in their integral and 

differential forms; they have already been derived and are known as 

Maxwell’s equations. 

Integral form Differential form

 
















+=

S

n

l

dSa
t

D
JldH






t

D
JH




+=




dSa
t

B
ldE

S

n

l

 



−=






t

B
E




−=




  ==
S S

n dSaBSdB 0


0= B


  ==


 ddSaDSdD
S S

n


= D



Maxwell’s four equations are used extensively to develop concepts of 

electromagnetic theory and their applications. 
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Take up the following example to illustrate one of Maxwell’s equations in its both integral 

and differential forms. The problem in this example is to find the magnetic field inside a 

parallel-plate capacitor consisting of circular plates in terms of the time rate of change of 

spatially uniform time-varying electric field inside the capacitor.  

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

• •

•

P

r

Capacitor boundary

Circular path 

of integration

za
H Ha=

Cross section perpendicular to Z axis 

of a parallel-plate capacitor consisting 

of circular plates showing the 

instantaneous time varying electric 

field represented by dots with circles 

(pointing towards the reader) and the 

corresponding azimuthal magnetic field 

at a point P on a coaxial circular path 

of radius r. 

In one of the two approaches, one of Maxwell’s 

equations is used in its integral form (approach I) while, 

in another approach, the same Maxwell’s equation is 

used but now in its differential form (approach II).  

In approach I, use the 

following Maxwell’s 

equation in integral form: 

 
















+=

S

n

l

dSa
t

D
JldH






 



=
S

n

l

dSa
t

D
ldH






0=J


(perfect non-

conducting dielectric 

between plates)

In approach II, use the 

following Maxwell’s equation in 

differential form: 

t

D
JH




+=




0=J


(perfect non-

conducting dielectric 

between plates)

t

D
H




=



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Approach I: 

 



=
S

n

l

dSa
t

D
ldH















=

=





2

2

rdS

rdl

S

l





•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

• •

•

P

r

Capacitor boundary

Circular path 

of integration

za
H Ha=

aHH


=

adlld


=

zaDED


== )( 

zn aa


=

 



=
S

z
z

l

dSa
t

aD
adlaH







 =
Sl

dS
dt

dD
dlH

22 r
dt

dD
rH  =

2

r

dt

dD
H =

  a
r

dt

dE
a
r

dt

dD
aHH



22
===

ED =

(expression for magnetic field at a radial distance r from the axis of the parallel-

plate capacitor consisting of circular plates obtained using approach I)
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Approach II: 
t

D
H




=




zaDD


=

z component

 )(
t

D
H z




=

 expanding left hand side in cylindrical coordinates

t

DH

r

rH

r

r




=












−






 )(1

0,0 = rHH

problem)  theofsymmetry  (azimuthal  0/ = 

t

D

r

rH

r 


=



 )(1 

Integrating for uniform D

 = rdr
dt

dD
rHd )( 

C
r

dt

dD
rH +=

2

2



constantn integratio =C
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C
r

dt

dD
rH +=

2

2



r

Cr

dt

dD
H +=

2


2

r

dt

dD
H =

For non-zero value of C, 

0  as  →→ rH

However, the magnetic field blowing up to infinity at the 

centre of the capacitor is not physically acceptable. 

Therefore, for a physically acceptable solution we must put 

0=C

 a
r

dt

dE
H



2
=

 a
r

dt

dD
aHH



2
==

ED =

(expression for magnetic field at a radial distance r from the axis of the parallel-

plate capacitor consisting of circular plates obtained using approach II)

Thus, approaches I and II, which use integral and differential forms of Maxwell's 

equations respectively, give one and the same expression for magnetic field in 

the given problem. 
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(static fields) VE −=

Let us see how the static-field relation 

gets modified in time-varying situations. 

t

B
E




−=




AB


=

t

A

t

A
E




−=




−=


 )(

0=
















+
t

A
E




Choose arbitrarily a vector A


such that

it satisfies the relation

partial time derivative and curl 

that involves partial derivatives 

with the space coordinates and 

angles being interchangeable

Electric scalar potential and magnetic 

vector potential in time-varying fields
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(static fields)

0= 

=



+
t

A
E




=E


V−=

t

A
VE




−−=




0=
















+
t

A
E




(vector identity  being a scalar quantity)

comparing 

/t = 0 for static fields

(static fields) VE −=


compare 

V
t

A
E −=




+




(relation between the electric field and two potentials 

namely scalar electric potential and magnetic vector 

potential for time-varying situations)
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AB


=

AAB


2)( −=

HB


0=

AAHB


2

0 )( −== 

AB


=

Let us establish wave equations in electric scalar and magnetic vector 

potentials, the solutions of which have applications in finding electric and 

magnetic fields in practical problems.  

(recalled)

AAA


2)( −=
(vector identity)

t

E
J

t

D
JH




+=




+=







0

ED


0=

AA
t

E
J

t

E
J








2

00000 )( −=



+=

















+ 

t

E
JAA




+=−




000

2)( 

Wave equations in magnetic vector and 

electric scalar potentials 
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2

2

00000000

2)(
t

A

t

V
J

t

A
V

t
JAA




−




−=

















−−




+=−









t

E
JAA




+=−




000

2)( 

condition) (Lorentz  000 =



+

t

V
A 


t

A
VE




−−=




(recalled)

Let the arbitrarily chosen magnetic vector potential satisfy 

the following condition known as Lorentz condition 

2

2

00000

2 )()(
t

A

t

V
JAA




−




−=−






A
t

V 
−=




00

2

2

000

2 )()(
t

A
AJAA




−+=−






J
t

A
A





02

2

00

2  −=



−

(wave equation in magnetic vector potential)



46

condition) (Lorentz  000 =



+

t

V
A 


0


= E


(recalled)

0


=

















−−
t

A
V



0

2




=




−− A
t

V


0

2

2

00

2




 −=




−

t

V
V

(wave equation in electric scalar potential)

(wave equations in electric scalar and magnetic 

vector potentials put together)

t

A
VE




−−=




(recalled)

(recalled)

t

V
A




−= 00















−=



−

−=



−

0

2

2

00

2

02

2

00

2








t

V
V

J
t

A
A





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AB


= (recalled)

Electric and magnetic fields in terms of 

magnetic vector potential

VjA 00−=


condition) (Lorentz  000 =



+

t

V
A 


tjexp as dependence Time

Vj
t

V
=





t

A
VE




−−=




(recalled)

Aj
t

A 


=




AjVE


−−=

VjA −= 00)( 


00

)(

j

A
V

−


=



Aj
j
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(expressions for electric and magnetic fields in terms of 

magnetic vector potential)
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Solutions to wave equations in electric scalar and 

magnetic vector potential: retarded potentials

.  .   
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
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
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−
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V
V  )0,0/(   
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2 =−= 



tV

Let is take first take wave equation in electric scalar potential

0/,0  :case special = t

0

2

2
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


 −=




−

t

V
V

0,0/  :case special = t

)0/,0  :I case (Special = t )0,0/  :II case (Special = t

The approach followed is to obtain the solutions for the special cases I and II, 

and then combine them to obtain the solution for the general situation of non-

zero values of both volume charge density and time rate of scalar potential:  0,0/  t
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)0/,0(   0
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
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t

V
V 

Special case I:

The solution has well known form representing a wave: 

r = distance of the point where the potential is sought from 

the source of potential 

I) case (Special  )0/,0(

   )(exp

=

−

t

rtjV





 = /vp = wave propagation constant, vp being wave 

phase velocity

Special case II:

II) case (Special   )0,0/(   
0
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Solution to be in compliance with the 

potential due to a static charge distribution 

which can be written with the help of 

potential due to a point charge
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on)distributi charge a  to(due  
4

1

0

=

= 









t

d
r

V

charge)point  a  to(due  
4 0

q
V = =


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I) case (Special  )0/,0(
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Following the same approach we can then obtain

   )0,00/(

  )(exp
4

0

=

−= 

Jt

drtj
r

J
A











(as the solution to wave equation

J
t

A
A





02

2

00

2  −=



− in vector magnetic potential)



51



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
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=lId
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== dld 

=

current element vector  through a filamentary 

wire of infinitesimal length dl

=ld


length element vector of magnitude 

dl the direction of which is the 

direction of current through the 

length element 

cross-sectional area of the 

filamentary wire

volume element occupied by 

infinitesimal length of the wire
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(solution to wave equation in magnetic 

vector potential)
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Special case of a steady current:
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(Biot-Savart’s law)

   1)(exp =− rtj 
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Retarded potential
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(solution to wave equation in magnetic 

vector potential)

(solution to wave equation in electric 

scalar potential)
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Retarded scalar electric and vector magnetic potentials: As the source quantities 
and I vary as exp (jt) at an instant of time t, the scalar and vector potentials at the 

observation point at a distance r vary as exp (jt/) , where t/ = t-r/vp is a time earlier than 

t. In other words, these potentials are ‘retarded’ in time (t/ = t-r/vp ), meaning thereby that 

the disturbances in the source, here in the quantities  and I, take a time r/vp to reach 

the observation point at a distance r while travelling with the velocity vp, and they 

manifest themselves in the potential quantities. 
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(solution to wave equation in magnetic 

vector potential)

(solution to wave equation in scalar 

electric potential)

Expressions that have practical application in finding field quantities may be 

put together:
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✓Continuity equation at a point relating the divergence of the current 

density to the time rate of the variation of volume charge density at the 

point has been derived starting from the conservation of charge in a 

region of charge flow.  

✓Continuity equation has been used to find the relaxation time of a 

medium, which measures how long a charge injected into a medium 

would  stay in the bulk of the medium.

✓That a conductor can be charged only at its surface and that a 

dielectric can be charged throughout its volume can be understood from 

the fact that the relaxation time of a conductor is very short, while that of 

a dielectric is very long. 

✓Faraday’s law for time-varying magnetic fields in both its integral and 

differential forms has been formulated.

✓Concept of electromagnetic induction has been developed. 

✓That electric and magnetic fields are coupled in time-varying 

phenomena has been appreciated. 
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Summarising Notes



55

✓Concept of displacement current has been developed with 

the help of the continuity equation, Poisson’s equation and 

differential form of Ampere’s circuital law.

✓Dielectric medium, even though it is non-conducting, 

allows the displacement current to pass through it in a time-

varying electric field.

✓Capacitor, though it blocks a direct current, allows a time-

varying current to pass through it in the form of 

displacement current.  

✓Loss tangent of a lossy dielectric in terms its conductivity 

and permittivity and the frequency of a time-periodic electric 

field has been derived.

✓If the region between the conductors of a capacitor is filled 

up with a lossy dielectric, then the loss tangent of the 

dielectric measures the extent to which the current through 

the capacitor fails to lead the voltage across it by the phase 

angle of /2. 
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✓Maxwell’s equations have been obtained in both integral and 

differential forms.   

✓Magnetic vector potential has been introduced defining it such that its 

curl represents the magnetic flux density.

✓One of Maxwell’s equations which relates the electric field with the 

time rate of variation of magnetic flux density as well as the relation 

between the magnetic flux density and vector potential has been used to 

find a relation between the electric field and the electric potential for a 

time-varying situation. 

✓Lorentz condition in terms of the time rate of scalar electric potential 

and the divergence of magnetic vector potential has been used to derive 

the wave equations in electric scalar and magnetic vector potentials.  

✓Solutions to the wave equations in electric scalar and magnetic vector 

potentials have been obtained keeping in view their potential 

applications (for instance, in the analysis of conduction current 

antennas). 

Readers are encouraged to go through Chapter 5 

of the book for more topics and more worked-out 

examples and review questions. 
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