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Lorinuily, equeltion

Consider a flow of electrical charge through a region that constitutes a
dc electric current.

Surround a point in the region of charge flow with a closed volume.

Flux of current density vector through the surface area S constitutes the
current flowing out through the surface enclosure :

Current = Flux of currentdensity vector= § J.dS =§ J.d, dsS
S S

(J = current density vector)

For dc current (not varying with time), the charge flowing into the volume
enclosure must be equal to the charge flowing out giving

§J.d,ds=0
S

What is the corresponding finding for ac current
(varying with time)?



Consider a flow of electrical charge through a region that constitutes an
ac electric current.

For ac current (varying with time), the charge flowing into the volume enclosure is
not equal to the charge flowing out.

The amount of charge in the volume enclosure must decrease with time if the
amount of outflow of charge exceeds that of inflow, while the amount of charge in
the volume enclosure must increase with time if the amount of charge inflow

exceeds that of charge outflow.

For a time-varying (ac) current, equate the flux of current density vector through the
volume enclosure, interpreted as the flux going out of the volume, to the negative time
rate of change of charge Q in the volume:

do

Fluxofj:fj.ﬁn ds ==
S dt



— 0= .[pdT (o Is the volume charge density)

For a positive value of the flux of current density (left
hand side), dQ/dt (time rate of change of charge within
the enclosure) in the right hand side has to be negative
corresponding to a decrease in charge within the
enclosure.

\ Choose the surface area of the volume enclosing the

charge to be constant. Since the integral on the right
hand side is convergent, we may replace the complete
derivative in the right hand side by its partial derivative
and put it under the definite integral



If we take the volume element to be an infinitesimal volume
At, we may regard the volume charge density p to be
approximately constant within the infinitesimal volume and
take its time derivative outside the integral.

This approximation leads to putting the sign of equality as
the sign of approximate equality.



AT Ot

™

The relation becomes exact if the volume element Az shrinks
l to zero, making it more reasonable to assume the volume
charge density to be constant within the volume enclosure .

Ij.ﬁn ds
Lt op _ L .
s  —_T <«— By definition the left hand side is the divergence of
At —>0 Az ot current density: v_J
- 0
v.j=-2£
ot

V.J+ 6—'0 =0 (continuity equation)



 Relowiion Time >

Relaxation time is a measure of how fast or slow a medium of uniform
conductivity and permittivity approaches electrostatic equilibrium.

Continuity equation Poisson’s equation Ohm'’s law

~_ |

Relaxation time

i Conductivity is uniform in the medium

a(v.E)+a—p=o «— v.F=P
i ot c

o(2)+%L ¢
g Ot

|

8_,0_0

ot g



op_ o©

ot g
!
dp _ o
j7_ gjdt

|

o
In p = —— ¢+ constant

g
Inp=——1t+Inp,
g
mhp-Inp,=——t

nhe=-24

Po &

We tacitly choose constant
in terms of another constant p,

constant=In p,



O
p=mﬁmﬂ"4j
&

|

— D. ex _t - N E  &£.8
P = Po €Xp T Relaxationtime 7 =—=
o O

For very large values of For very small values of
relaxation time T relaxation time T

t ) t
-——=0 —— — —©

T
exp _L —1; exp _L —>0;
T T

P = Py p—0

10



For very large values of For very small values of

relaxation time T relaxation time T
Tof_ &8 T_E &k
o o o o

t t
-——0 —— > —©
3 T .
exp L —1 exp L —0
T T
P = Py ) p—0

For a dielectric medium, the value of conductivity o is very small that
renders T a very large value. This makes the volume charge density p in
the bulk of the dielectric tend to p, (equilibrium volume charge density).
Therefore, within a time of interest ¢, the bulk of a dielectric medium can
be charged with the equilibrium volume charge density (o).

On the other hand, for a medium of good conductivity, the value of
conductivity o is very large that renders T a very small value. This makes
the volume charge density p in the bulk of the dielectric tend to 0. Thus,
the bulk of a medium of a good conductor cannot be charged; any charge
injected into such a medium of good conductivity will not stay long within
the bulk of the conductor only to reappear at the outer surface of the
conducting medium in compliance with the requirement of the
conservation of charge.
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Conductivity, permittivity, and
relaxation time of typical
medium materials

Mediu_m ( mh((j/m) & | T=egy0
material
Copper 5.8x107 1 1.5x1019¢
Sea-water 4 81 2x1010g
Corn oil 5x104 | 3.1 0.55s
Mica 1015 5.8 | ~1/2 aday
?J’:;;Z) 107 | 5 | ~50days

The concept of the relaxation time is very useful in understanding the
electromagnetic boundary conditions at the interface between two
dielectrics as well as those at the interface between a conductor and a
dielectric.



TMMM?M magntic ficld
and fmaaéz? s baw of cleHromagnitic indution

Electromagnetic force (EMF) is a measure of the capability of a source of energy to
drive an electric charge around a circuit, that is, generate a circuit current; it is
estimated as the energy per unit charge that is imparted by the energy source. The
unit of EMF is, therefore, that of potential, that is, volt or V.

»fmday;hw

Faraday’s law relates the time rate of change of magnetic flux linked with a closed
circuit with an electromotive force (EMF) induced in the circuit.

E = EMF of thesource
i = € + Einguced E..quceqd = EMF Induced in the circuit
R \
(Faraday’s law) R =Resitanceof thecircuit

13



E = EMF of thesource
i = € + Einduced E..quced = EMF Induced n the circuit
R
(Faraday’s law) R =Resitanceof thecircuit

We can also express Faraday’s law in the following form

i — g + ginduced

R . /
l e __dd

@, = Flux of magntic flux density likned with the circuit

A\ 4

induced — dt

o _dty

j= Tdf (Faraday’s law)

v
How can we appreciate

e __db,

induced ~ dt

14



How can we appreciate

__dg,
duced dt

In order to appreciate that the induced voltage is the negative time
derivative of magnetic flux linked with a circuit, as it is given by the
above expression, let us consider a conducting rod which is free to
slide on a pair of transverse conducting rails, the whole immersed in
a uniform steady normal magnetic field while a current passes
through the circuit from a source of electromagnetic force.

.

EMF
Source

Pair of conducting
rails

The force due to the applied magnetic field on the conducting rod carrying
current supplied by a source of EMF causes a motion of the conducting rod on
the pair of conducting rails.

Let the rod, rail and circuit lie on ZX plane and the magnetic field be applied
along y direction.

The energy supplied by the source of EMF is balanced by the energy that is
spent in doing work to move the conducting rod plus the energy that is lost in
the circuit resistance.



The energy supplied by the

source of EMF is balanced by the energy that is spent in

doing work to move the conducting rod plus the energy that is lost in the circuit

resistance.

AW = (AW), +(AW),

AW =EAQ =Ei At

~
AQ =i At

(AW), =i’R At

AW =energyspent by thesourceof EMF for supplying
circuitcurrenti in time Az or in other word
chargeAQ =i At

(AW), =energy lost due to thecircuit

(AWY, = F-Acd resistanceR in time A¢
2 = ) az

(AW), =energyspentin doingwork tomovetherod

by theforce F on therod dueto themagneticfield
through an elementof distanceAz in time A¢

v

PR LF T

ﬁzijdixl} il xB

EMF
Source

/ B=Ba,
N (cur{entﬂow being along x in the conductingrod)
[ =length of therodintercepted by thecircuit

F=ijdix1§:iixz§=i(zzzx)><(Bzzy) = ilB(a, xa,) =ilBa,

[ =

[

Pair of conducting
rails

SiN=iI"RAt+F-Azd_=i’RAt+(ilBad,)-(Azd,) =i’ R At +ilBAz
16



SiN=iI"RAt+F-Azd_=i’RAt+(ilBd,)-(Azd,) =i’ R At +ilBAz

l

EiAt =i’R At +ilBAz
\ ..
l Divide by i At

A0,
At
R

which becomes in the limit for
instantaneous current At —> 0

d¢
g7
dt

= % (Faraday’s law)

EMF
Source

Pair of conducting
rails

The rod moves an infinitesimal distance Az
in infinitesimal time At due to the force on it
due to magnetic field along z: F =i/Ba.

This cause an increase in the area of
the circuitby AS =/Az

Consequently, this causes an increase
in flux of magnetic flux density

Ap, =B-d AS
Ap, =B-a AS—(Ba )-(d@,)AS = BAS

AS STz \B

Ag, = BAS = Bl Az

|

Ay _ Az

II
| ::1

<

At At
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5%
= Tt (Faraday’s law)
\
dgy

l ginduced - dt

(Faraday’s law)

P — g + ginduced

l {]
R (Faraday’s law)

While formulating the problem, we have assumed the current flow to be in positive x

Pair of conducting
rails

EMF
Source

direction, causing a movement of the rod in positive z direction resulting in an increase
in the area of the circuit, and consequently, an increase in the magnetic flux linked with

the circuit that makes dgg/dt positive. You can then appreciate that if the direction of
either the current or the magnetic field are reversed, then the force on the rod and its

movement will also reverse and the circuit area as well as the magnetic flux linked with
the circuit will decrease, thereby making d¢B/dt negative. Therefore, in general, we can

write
[ = g + ginduced \
R
d¢
g _ B
b
R

1=

dey
dt

ginduced - _‘

(Faraday’s law)
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f«n?;law

i= g + ginduced \
R
|
_ dt (Faraday’s law)
R
d¢
Entueed = |2
induced ‘ dt

/

You can recapitulate, referring to the example of the current carrying conducting rod on
rail in a magnetic field dealt with, and with the help of the above expression for
Faraday’s law, that the circuit current decreases due to electromagnetic induction.
Consequently, this would reduce the force on the conducting rod and oppose its
movement that causes a change in the circuit area. This in turn would reduce the
change in magnetic flux linked with the circuit responsible for electromagnetic induction.
The phenomenon demonstrated in this finding is known as Lenz’s law, according to
which electromagnetic induction takes place such that it opposes the cause to which it
is due; in this example, the cause is the movement of the rod which is opposed by the
effect of the decrease of current in the rod due to electromagnetic induction.
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Fonadon, s low

In an example to illustrate Faraday’s law consider a straight conducting rod of a
given length that moves parallel to its length with a given velocity on a plane
perpendicular to a given magnetic flux density of a uniform magnetic field

region, and hence obtain an expression for the amount of voltage developed
across the length of the rod, with the help of Faradays law, as follows.

[ =length of therod
v = velocity of therod (given)

B =magnetic flux density (magnitude)

[Az = nfinitesi mal area traced by therod in infinitesi mal time A¢
Az = infinitesi mal distance traversed by therod in infinitesi mal time A¢

Element of magnetic flux Agg through the element of area IAz is obtained by
multiplying the element of area by the magnitude of magnetic flux density B as

Ag, = BIAz

20



Ag, = BIAz

l

Ady _ g Az
At At

: A BIAz

Amount of induced voltage = 0, =Lt,, % =Lty %

Az
= Bz(LzAHO Ej = Bly

(expression for the amount of voltage developed across the length of the rod)

21



Faraday disc

In another illustration to exemplify Faraday’s law, let
us find an expression for the amount of voltage
developed at the rim with respect to that at the axis

or axle of a conducting disc, called Faraday disc, . je

rotating in a region of magnetic field is perpendicular Do

to the disc. We can find the desired expression with ' %
the help of the preceding example as follows.

Element of voltage developed along an element of radial

rod length dr considered at a radial distance r from the X
axis of the disc, will be Bdrv, where v is the velocity of the

element of radial rod length (so found with the help of the

result of the preceding example). In view of the relation v =

ar, where w is the angular velocity of rotation of the disc,

we can then write

Element of voltagedeveloped acrossdr (element
of rod length) = Bdrar = Bardr

\ Integrating between the axle at r = 0 and the rim at r
= a of the disc of radius a

Amount of induced voltage between the rim and axle

= ijrdr = Ba)jrdr = Ba)[r2 /2]3 = Bwa® /2
0 0

(expression for the voltage developed at the rim of the disc with respect to that at its axle)
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7nfegwlfom of fmaday_ 3 boaw

The induced EMF in a circuit sets up an induced current, which can be
attributed to a flow of charge in an induced electric field £

If we move a test point charge g round the closed path coinciding with the
circuit, the element of work done dW on the charge in moving it through
an element of length d/ of the path may be written as

dW =F-dl
A _ —
F =forceon a testchargeq due toinduced electric field £
F=qE
dl =element of length vec tor on the circuit of magnitude d/
whose direction is the direction in which t he test charge ¢ is moved
dW =qE - dl

14— Integrating round the closed circuit

W= :de iqu dl = qifE dl (work done in moving the charge g
round the circuit)

23



<
I

:de — iqu.df = qifE . di (work done in moving the charge q round the circuit)
l [ l

comparing W may also be equated to the energy imparted by the induced EMF to the

l \ charge g as

W = q ginduced

Einduced = fE dl
!

AN

comparing
& dueed = — ij (Faraday’s law) (obtained earlier)
t

{E dl = — dp, (Faraday’s law)
l

24



In situations where the area remains constant and the

l magnetic flux density varies with time, we can replace
the total time-derivative on the right-hand side by the

partial derivative and put it under a convergent,

—~ OB _ definite integral.

(Faraday’s law)



Faraday’s law in integral form expressed in different
ways may be put together as follows:

g. - d¢B

duced = (Faraday’s law)
dt

{E-dl __9%

f dt

fﬁ-dq = —dijé-&'ndS > (Faraday’s law in integral form)
/ ZLS

{E d”:-ja—B-an ds

f ¢ Ot )

That electric and magnetic fields are coupled in time-varying phenomena
is evident from Faraday’s law.

26



We have earlier derived from first principles (in Chapter 4) the differential form of
Ampere’s circuital law from its integral form. On the same line, we can also obtain the
differential form of Faraday’s law from its integral form. In fact, we need not now repeat
the derivation once we identify the analogous quantities in Ampere’s circuital and
Faraday’s laws. Let us see how this can be done.

Let us recall (from Chapter 4) Ampere’s circuital law as follows:

§ [ =i (Ampere’s circuital law)
/

l \lzjj-ﬁndS
S

ffﬁ' [ = Ij .d,dS (Ampere’s circuital law)
/ S

comparing Let us recall Faraday’s law as follows:
- OB OB _ ,
ifE-dl =—|—-a,dS= I——-an dS (Faraday’s law)
’ < Ot < Ot

E is analogous to H and

—

J and is analogous to— B

27



§A-dl=[J-a,ds {E.af:— a—B-andszj—ﬁ—.a ds
/ S / S

(Ampere’s circuital law) (Faraday’s law)

~ 7

Comparing the two laws we have already identified the analogous quantities:
E is analogous to H and J and is analogous to _a_é
We have already derived (in Chapter 4)
VxH=J from §F[—di=J‘j-ﬁn dsS
/ S

Therefore, without repeating the derivation we can write analogously

Vxljf:—@—B from §E-di= —8—B-éndS
ot ) ¢ Ot
. OB , o .
VxE = - (Faraday’s law in differential form)
t

That electric and magnetic fields are coupled in time-varying phenomena is evident
from the association of electric field with time-varying magnetic field given by
integral or differential form of Faraday’s law.

Furthermore, magnetic field is also associated with time-varying electric field,
which however is not given by Faraday’s law and which can be appreciated from
the concept of displacement current to follow.
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Let us see how magnetic field is associated with a time-varying electric field.

V.J+ 88—’[; =0 (continuity equation) D =electric displacement

V.D=p (Poisson’s equation)

-0 - The partial time-derivative and the divergence, which
V.J+—V-D=0 <«— involves partial derivatives with respect to space/angle
lat coordinates, are interchangeable.
v.i+v.22 g
ot

v.(j + 5_D) —(0 (obeying continuity equation)
ot

29



oD (obeying .~ (Ampere’s circuital Divergence of

V.(J + 8_) =0 continuity VxH = law in differential form) curl of a vector
tion) ity i

equa l quantity is zero

V.VxH)=V.J V.(VxH)=0

conflicting with

If we replace
VxH=J
with aﬁ

VxH=J+—
l ot
. . - D
— No conflict — V.(VxH):V.(J+a—):O
4

Thus, we get the differential form of Ampere’s circuital law that is
consistent with the continuity equation in time-varying situations as

—

VxI:I:j+a—D
ot

30



VxH = j+a_D (differential form of Ampere’s circuital law that is
Ot  consistent with the continuity equation in time-

varying situations)

(showing how magnetic field is associated
with time varying electric field) (D = ¢ E)

J = Conduction current density or convection current
density due to the flow of charge in a medium
depending on whether the medium is a conductor or
free space

oD

— = Displacement current density not constituted by the

ot flow of charge in a free-space or a dielectric medium
if, with time, there is a variation of electric field hence
electric displacement (D= ¢ E)

Thus, the displacement current density in a medium is given
by the partial derivative of electric displacement with time for
a time-varying electric field.
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A capacitor blocks dc current but allows ac current to pass through it.
The ac current through a capacitor is the displacement current

caused by time-varying electric field in the capacitor due to an ac
voltage applied on it.

Let us appreciate with reference to the example of a parallel-plate capacitor that the
current density in the capacitor is equal to the displacement current density.

Y

Leapacitor = = = current tlrough capacitor

l ~ 0=CV < C =capacitance
i _do .4V V' =potential differencebetweenplates
capacitor d t dt L
l \ V=Ed <+— E= e electric field between plates
icapacitor = Cd d_E
dt
— e A A =plate area
l ¢= 4 ¥ d=distancebetweenplates
& = permittivity of the medium betw eenplates
: oA dE DesE
lcapacitor =& E
: . dD
lcapacitor - E

_ lcapacitor _ dD

|

Jca acitor
pactt A dt

32



J _ Leapacior _ dD Displacement current density is given by

capacitor —
A dt oD
J —

displacemeit — a
t

(capacitor current density)

Within the capacitor the electric field and
T electric displacement are each
independent of space coordinates.
comparing Replacing the partial derivative with
‘ complete derivative we then have

|

capacitor ~

v

J :dD

displacemat d
t

J

displacemat

(Capacitor current density is thus identified as the displacement
current density)
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ﬂoW M"’M?
boss Tamgend

Current through an imperfect or lossy dielectric comprises conduction and
displacement currents.

—

J=cE+ ap
/ o
Conduction current density Displacement current density
J=cE+¢ G_E D=¢E
ot
\ Considering time dependence exp jwt,
0/0t=jw
J= O'E+ja)gE

|

j=0E+ja)517?=jw(5+i}ﬁ=jw(g—jzjﬁ
jo Q)
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l 1\ g' c
" 2

— — g =
J=jo(g - je"E @
\ * ' . ”

l E =€ —j&

—

o is the angle by which the
current density in an
imperfect dielectric (o # 0)

falls short of leading the

electric field by the phase

angle of /2

"

g olw o
tan5:—,: =
& & wE

(Loss tangent)

JOE L

<+— Complex permittivity ¢

Imaginary
Axis

Conduction

current density

» Real Axis

Phasor diagram

szwg*E (current density in terms of electric field and complex permittivity)

Displacement
current density

\ /

=0'E+]a)5E
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Pavwell s W«lomy

Simple enough to imprint on a T-shirt and yet rich enough to provide new insights
throughout a lifetime of study — J.R. Whinnery

“The teaching of electromagnetics”, IEEE Trans. Education ED-33 (1990) p.327

Several disciplines hang as gems on one priceless necklace which it was
Maxwell’s privilege and honour to recognize as capricious Nature’s enduring
ornament

— P. Khastagir
“‘Apologia,” Seminar on Electromagnetics and their applications, 22-23
December 1988, Varanasi, India

James Clerk Maxwell originally gave as many as
twenty equations in twenty variables; it was Oliver
Heaviside, who is one of the founders of vector
calculus, who reduced these equations to four
equations.
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We may recall the following four equations in their integral and

differential forms; they have already been derived and are known as
Maxwell’'s equations.

Maxwell’s equations

Integral form Differential form

§D-d§=§ﬁ-a‘ndsszdr V-D=p
S S T
§{B-dS=§B-d,ds=0 V-B=0

S N

- B _ 0B
§E-dl =- 9B G ds VxE=-"

) ot ot

- -~ oD - - 0D
fa-dl =[|J DG as VxH=J+2
/ 3 ot ot

Maxwell’s four equations are used extensively to develop concepts of
electromagnetic theory and their applications.
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Take up the following example to illustrate one of Maxwell’s equations in its both integral
and differential forms. The problem in this example is to find the magnetic field inside a
parallel-plate capacitor consisting of circular plates in terms of the time rate of change of
spatially uniform time-varying electric field inside the capacitor.

In one of the two approaches, one of Maxwell’s
equations is used in its integral form (approach I) while,
in another approach, the same Maxwell’s equation is
used but now in its differential form (approach II).

In approach |, use the
following Maxwell’s

Capacitor boundary

equation in integral form: Circular path
of integration
§A-d :j[ﬁa—Dj i dS
< ot
l — j =0
~ 13 (perfect non-
if dl =|—-a, conducting dielectric Cross section perpendicular to Z axis
! S between plates) of a parallel-plate capacitor consisting
In approach Il, use the of circular plates showing the
following Maxwell’s equation in instantaneous time varying electric
differential form: J=0 field represented by dots with circles
. ab — (pointing towards the reader) and the
VxH=J+— (perfect non- corresponding azimuthal magnetic field
ot conducting dielectric at a point P on a coaxial circular path
l between plates) of radius r.
- 0D



Capacitor boundary

Approach I: 13(:gE) —Da

/ ““n Circular path
of integration

dl =dla, oDa.

fﬂeag-dzag_l _=a.ds
l fai=2nr
/
‘/ IdSZﬂ'l’z
dD S
H,{dl=="[dS
/ ldt S
H@272'r:d—D7rr2
l dt
m,=90r
dt 2 / D=cE
T a-Prs_9Ers
M=oty = 3= g 5%

(expression for magnetic field at a radial distance r from the axis of the parallel-
plate capacitor consisting of circular plates obtained using approach [)
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5 <+ D=Da

l <+<—— z component
(VxH), =

0D «— expanding left hand side in cylindrical coordinates
4

l(@(rHe) ~ 6Hrj_ oD
r\ or 00 ) ot

«—

H,#0,H, =0

0/060 =0 (azimuthalsymmetryof theproblem)
1o(H,) oD
r or ot

f7 Integrating for uniform D
j d(rH,) = c;—?jrdr

|

2
ng_dDr_

=——+C
dr 2 ™\

C =1integration constant
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For non-zero value of C,
T H,—>x as r—0

However, the magnetic field blowing up to infinity at the

l centre of the capacitor is not physically acceptable.
H. = d_Df Therefore, for a physically acceptable solution we must put

C=0
H=H,d,="2"3,
dt 2 .
l D=¢E
I:I:gd—Ezﬁg
dt 2

(expression for magnetic field at a radial distance r from the axis of the parallel-
plate capacitor consisting of circular plates obtained using approach Il)

Thus, approaches | and Il, which use integral and differential forms of Maxwell's
equations respectively, give one and the same expression for magnetic field in
the given problem.
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vecAor f&(érwf&al mfmwar&y,m W

Let us see how the static-field relation
E=-VV (static fields)
gets modified in time-varying situations.

Choose arbitrarily a vector A
such that

it satisfies the relation B =V x 4
B OB partial time derivative and curl

5 that involves partial derivatives
l / with the space coordinates and

angles being interchangeable
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~ 04
VX(EJFEJZO <«<— comparing —* VxViy =0
l (vector identity w being a scalar quantity)
. 04
E+—=V
a7

—— olot = 0 for static fields — E =V (static fields)
/

compare
/
E=_vV (staticfields)

~

w==F
E+__yy
ot
Fovy-A

(relation between the electric field and two potentials

Ot namely scalar electric potential and magnetic vector
potential for time-varying situations)
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Wave Www wn ma?nﬂ'&o veAor and
leAric scalor polertials

Let us establish wave equations in electric scalar and magnetic vector
potentials, the solutions of which have applications in finding electric and

magnetic fields in practical problems. . - _
VxVxA=V(V-A)—-V*A4

B=VxA (recalled) —> VxB=VxVxA (vector identity)
— — — / — —
VxB=V(V-A4)-V*4 /ngOE
T Byl ob OF
l _/’lO VXHZJ-*_—ZLZJ—FEOE

VxB=uVxH=V(V-A)-V*4

|

y0£j+50 2—?} = ,uoj+,uoe90 %—f :V(V-Z)—Vzﬁ

l ]

- - - E
V(V-A)-V’A=u,J + u,e, aa_z
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—

~ ~ - OE
V(V-A)=V?A=u,J + e, — _
l o \ E=-VV o4 (recalled)
ot

NP 0 04 F ov 0’4
V(V-A)=V* A= pyJ + p1&, a(_VV_E] = luOJ—,uoé‘OVE—,uOEO a2

Let the arbitrarily chosen magnetic vector potential satisfy
the following condition known as Lorentz condition

V- A+ p,é, 86_1; =0 (Lorentzcondition)

B} L. ov 04
V(V-A4)-V?4= Ho =V (&, E) — Ho&o o l
— aV -
&.—=-V -4
l Ho&y o
0°A

V(V-E)—sz?l:yOJ+V(V-IZI)—yOgoy
—_— 2_> —_—
2
\ A_/logo?:_luw]

( wave 47,14/&:7'1}0% 1 maﬁnﬂ:io velor /a«ofmfwog )
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V.E=F (recalled) «— [=-_VJV _od (recalled)

&y ot
04 P V-A+ e a—V—O (Lorentzcondition) (recalled)
V|-VVy-—— =L Ho&y o
ot ) &,
l - oV
V-A=—-pue,—
- Ho&y o
_sz_gv.;l:ﬁ
ot &
o’V p

VV-ue —=—=1
Hoéy o

&y
( wave @7%&%&0% in elechric scabar f«of&n%woé )

)

v’4 ) e =—HoJ

oV p
VYV - 1ygy —=—"—
Ho& o ,

( wave a?waf»&oww/ wn electric scalar and magnﬂ:io
veilor ﬁofmﬁa«&/ M %ﬁﬂ'ﬁ% )
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ma,wﬂ"«i& veAor Mmfml

V-A+ p,é, 8@_1; =0 (Lorentzcondition)
l T— o

i Time dependenceas exp jwt

— V-A=—jousV o “

. 04 — &
E=-VV —— (recalled)

l ot R R
. . B=uH
E=-VV—jwA s Ho

— V(V-A)=—j a),uogovxA
l / JOL,E,
VY- V(.V-A) i

— JOUHE,

< e

x A (recalled)

A

B
Hy

-«—

E:—ja)(z_{i-F 2. ) ﬁ:VXA
0)/,[080 IUO

(expressions for electric and magnetic fields in terms of
magnetic vector potential) 47



%Mww% wave Wafww in elechric scabar and
magw%o vedor /:&07'&;«7%@/ 2éfe MM WTM@&/

Let is take first take wave equation in electric scalar potential

aZV p o) an p
2y _ Z - - _F VV—-puey—=——
VYV - 1,8, pv . Ho& o g,
14— specialcase: p=0,0/0t#0 14— specialcase: 0/0t=0, p#0
2 oV 2 %
VV =ty —5=0 (p=0,0/0t+0) VvV =-—L£ (@/6t=0, p=0)
80
(Specialcasel: p=0, 0/0t #0) (Specialcasell: 0/0t =0, p#0)

The approach followed is to obtain the solutions for the special cases | and Il,
and then combine them to obtain the solution for the general situation of non-
zero values of both volume charge density and time rate of scalar potential: 0/0t#0, p#0
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Special case I:
2

VZV—ﬂogoaale/ZO (p=0,0/0t+#0)

The solution has well known form representing a wave:
V ocexp j(wt— L)
(p=0,0/0t#0) (Specialcasel)
r = distance of the point where the potential is sought from

the source of potential
Special case ll:

B = a/v, = wave propagation constant, v, being wave
phase velocity

v =—L (@/a=0, p#0) (Specialcasell)
Solution to be in compliance with the
potential due to a static charge distribution
. which can be written with the help of
(0/0t=0, p#0) (Specialcasell) potential due to a point charge

N l

y=—9_ (due toa point charge) +— g¢g= Ipdr
472290 T

1 R
V=—— J. Lar (due toa chargedistribution)
drgy < r
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! J.B dt (duetoa chargedistribution)

V ocexp j(wt—fBr) V=4ﬂg r
0 ¢

=0, 0/0t #0) (Special I :
(o #0) (Specialcasel) (0/0t=0, p#0) (Specialcasell)

o~ 7

Combined

: [Eexp jt-prydr
drgy < r

(0/0t#0=0, p#0)

V=

(as the solution to wave equation

oV
VYV - &, —5 =—"— in scalar electric potential)
ot &

Following the same approach we can then obtain
> J
A= &J.—expj(a)t—ﬁr)df
4 r
(0/0t#0=0, J #0)
(as the solution to wave equation

-
V2A- pe, 867124 ——u,J in vector magnetic potential)
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— Idl = current element vector through a filamentary
wire of infinitesimal length ad/

—

dl = length element vector of magnitude
Jdr = idr _ ia dl =1dl dl the direction of which is the
a a direction of current through the
Jdr=1Idl length element

a = Ccross-sectional area of the
filamentary wire

— dr=adl=volume element occupied by

. infinitesimal length of the wire

A :&J.iexpj(a)t—ﬁr)df
A9 (solution to wave equation in magnetic

(6/6t#0=0, T = 0) vector potential)

|

A= ﬂ_‘.iexp j(wt—prydl  (solution to wave equation in magnetic
4 r vector potential)
(0/0t#0=0, I #0)
Special case of a steady current: exp j(wt—fr)=1

A= ﬂjidi (Biot-Savart’s law)
4rdr
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Btonded peritial

P

N

V= —eXp](a)t Brydr J' exp j(wt— Br)dl
47z T 4x
(8/8t¢0=0,p¢0) (0/0t#0=0,1+0)
_[Bexpjw(t—r/vp)dr =t Ilexp]w(t rlv )dl
r 4zl
(0/0t#0=0, p#0) (0/0t#0=0,1+0)

(solution to wave equation in electric (solution to wave equation in magnetic
scalar potential) vector potential)
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1 rp : - Ji -
V=——|=cexpjo(t—r/v )dr _Ho (L i (f —
Mwolr pjot-riv,) i 4ﬂjram]wa rlv))dl
(0/0t#0=0, p=0) (0/0t#0=0, [ #0)
(solution to wave equation in scalar (solution to wave equation in magnetic
electric potential) vector potential)

Retarded scalar electric and vector magnetic potentials: As the source quantities p
and / vary as exp (jot) at an instant of time ¢, the scalar and vector potentials at the
observation point at a distance r vary as exp (jot) , where t' = t-r/v, is a time earlier than
t. In other words, these potentials are ‘retarded’ in time (' = t-r/v,, ), meaning thereby that
the disturbances in the source, here in the quantities p and /, take a time r/v, to reach
the observation point at a distance r while travelling with the velocity v,, and they
manifest themselves in the potential quantities.

Expressions that have practical application in finding field quantities may be
put together:

i LN ; 7
A="—"|—expjo(t—r/v )dl
4ﬁfr pjo(t-riv,)
=4 >

Hy
W Hy&,

53



v'Continuity equation at a point relating the divergence of the current
density to the time rate of the variation of volume charge density at the
point has been derived starting from the conservation of charge in a
region of charge flow.

v'Continuity equation has been used to find the relaxation time of a
medium, which measures how long a charge injected into a medium
would stay in the bulk of the medium.

v'That a conductor can be charged only at its surface and that a
dielectric can be charged throughout its volume can be understood from
the fact that the relaxation time of a conductor is very short, while that of
a dielectric is very long.

v'Faraday’s law for time-varying magnetic fields in both its integral and
differential forms has been formulated.

v'Concept of electromagnetic induction has been developed.

v'That electric and magnetic fields are coupled in time-varying
phenomena has been appreciated.
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v'Concept of displacement current has been developed with
the help of the continuity equation, Poisson’s equation and
differential form of Ampere’s circuital law.

v'Dielectric medium, even though it is non-conducting,
allows the displacement current to pass through it in a time-
varying electric field.

v'Capacitor, though it blocks a direct current, allows a time-
varying current to pass through it in the form of
displacement current.

v'Loss tangent of a lossy dielectric in terms its conductivity
and permittivity and the frequency of a time-periodic electric
field has been derived.

vIf the region between the conductors of a capacitor is filled
up with a lossy dielectric, then the loss tangent of the
dielectric measures the extent to which the current through
the capacitor fails to lead the voltage across it by the phase
angle of #/2.

55



v'"Maxwell’'s equations have been obtained in both integral and
differential forms.

v"Magnetic vector potential has been introduced defining it such that its
curl represents the magnetic flux density.

v'One of Maxwell’s equations which relates the electric field with the
time rate of variation of magnetic flux density as well as the relation
between the magnetic flux density and vector potential has been used to
find a relation between the electric field and the electric potential for a
time-varying situation.

v'Lorentz condition in terms of the time rate of scalar electric potential
and the divergence of magnetic vector potential has been used to derive
the wave equations in electric scalar and magnetic vector potentials.

v'Solutions to the wave equations in electric scalar and magnetic vector
potentials have been obtained keeping in view their potential
applications (for instance, in the analysis of conduction current
antennas).

Keaders are m&owmg%‘fo go Wougﬂ 544;&(% 5
of% book /o»b mow%;n’a« and more worked-ovt

mm;v&:& ond veview Miorw.
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