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Engineering Electromagnetics Essentials

Chapter 4

Basic concepts of 

static magnetic fields
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Objective

Recapitulation of basic concepts of static magnetic fields or 

magnetostatics

Topics dealt with

Coulomb’s and Gauss’s laws of static magnetic fields or 

magnetostatics

Biot−Savart’s law  

Ampere’s circuital law

Lorentz force experienced by a moving charge in a magnetic 

field

Force experienced by a current-carrying conductor in a 
magnetic field

Background

Vector calculus expressions developed in Chapter 2

Basic concepts of static fields developed in Chapter 3 as 

some of these concepts are extended to static magnetic fields 

in this chapter
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Force between a pole of a magnet and a pole of another magnet

expressed by a law analogous to Coulomb’s law of electrostatics:
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(That the unit of permeability is H/m will be appreciated from the 

expression of inductance of a solenoid to be derived later, the unit of 

inductance being Henry or H) 
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Magnetic flux density is related to magnetic field as electric flux 

density or electric displacement is related to electric field  
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Magnetic flux density due to a magnetic point charge qm at a distance 

r is analogous to electric field due to an electric point charge     

BqF m


=

Force on magnetic point charge qm in a region of magnetic flux density 

analogous to force on electric point charge in a region of  electric field  
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Magnetic field due to a magnetic point charge qm at a distance r is 

analogous to electric displacement due to an electric point charge     
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Electrostatic 

quantities/expressions

Magnetostatic 

quantities/expressions

Analogous electrostatic and magnetostatic quantities
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Gauss’s law and Poisson’s equation of magnetostatics
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analogous

analogous

Free magnetic charges 

do not exist 

Free magnetic charges do not exist. A magnetic charge is always 

accompanied by an equal and opposite magnetic charge as in a 

permanent magnet. One cannot separate north and south poles of a 

magnet by breaking the magnet.  

As many flux lines leave a volume enclosing a pole (magnetic 

charge) of a magnet as those enter the volume. Thus, magnetic 

flux lines always form closed loops. 

In other words, magnetic flux lines are continuous

Gauss’s law
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Electrostatics Magnetostatics

analogous

Free magnetic charges 

do not exist 

0= H


Poisson’s equation
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Poisson’s equation of magnetostatics is the manifestation 

of the absence of free magnetic charges (poles); it is 

another way of stating that magnetic flux lines are 

continuous. 

Electric flux lines (as in an electric dipole) originate from a 

positive point charge and terminate on a negative point 

charge whereas magnetic flux lines originating from north 

pole of a magnet will return to the north pole via south 

pole. 
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Biot−Savart’s Law
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Element of magnetic field and element of magnetic flux density due 

to a direct current through an element of length of a filamentary 

conductor (say, a solid-cylindrical conductor of circular cross-section 

of radius approaching zero) is given by
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Magnetic field due to a long thin wire carrying a direct current

Wire is aligned along z axis carrying a direct 

current along z.

P is point where the magnetic field is sought.

O is the foot of perpendicular form P on the 

length of the wire.

O is considered as the origin z = 0. 

OP = r

Wire extends from z = - to .
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Elements of magnetic field and magnetic flux 

density are given by: 
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Integrating over the length of the wire we get

For the wire extending from z = - to , the integration limits 

become  = -/2 and  = /2 giving
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reader  thefromaway direction  azimuthalin 

paper   theof plane  the  tonormalvector unit  =a




14

Magnetic field due to a thin straight wire of finite length 

carrying a direct current

Point where to find magnetic field is not symmetric with 

respect to the wire of finite length

For the wire extending from z = -l2 to l1, 

the integration limits become  = 1 and  = 

2 giving
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Point where to find magnetic field is symmetric with respect 

to the wire length of finite length

(Magnetic field at a point symmetric with respect to the wire length) 

Wire length AB = OA + OB = l1+ l2 = l/2+l/2 = l
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Magnetic field at the centre of a a circular loop of wire carrying a direct 

current
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(magnetic field at the centre of a a circular loop of wire carrying a direct current)
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Magnetic field at the centre of a regular polygonal 

loop of wire carrying a direct current 

  

(Magnetic field at a point symmetric with respect to the wire length) 
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a = perpendicular distance of each side of the polygon 

from its centre

l = length of each side of the polygon

(Expression for the magnetic field at the centre of the 

polygon loop of wire carrying a direct current due to a 

single side of the polygon)
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(Expression for the magnetic field at the centre of the 

polygon loop of wire carrying a direct current due to a 

single side of the polygon)
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(Expression for the magnetic field at the centre of the 

polygon loop of wire carrying a direct current due to n

sides of the polygon obtained by summing up the 

contributions of sides)
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Expression becomes identical with the expression for magnetic field at the 

centre of a circular loop of wire carrying a direct current, for large number of 

sides of the polygon when the latter tends to become a circle!



19

Magnetic field due to a circular loop of wire carrying a direct current at a 

point lying on the axis of the loop off from its centre
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P is the point on the z-axis, at a distance d from the 

centre O of the circular current loop, where the 

magnetic field is to be found
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Element of magnetic field at P due to current element at S:
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While summing up the contribution to the magnetic field at P due to all 

diametrically opposite current elements, the second term containing the unit 

vector will cancel out since unit vectors at diametrically opposite points though 

equal in magnitude are in opposite directions.   
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current at a point lying on the axis of the loop off from its centre)
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(magnetic field due to a circular loop of wire carrying a direct 

current at a point lying on the axis of the loop off from its centre)

zzz a
da

i
a

da

ai
aa

da

ai
H


2/3222/322

2

2/322 )(2)(2
2

)(4 +
=

+
=

+
=












loopcurrent  circular    of  area 2 == a

Special case: d = 0
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(magnetic field at the centre of a a circular loop of wire carrying a direct current as a 

special case d = 0)
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Magnetic dipole moment
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(expression for electric field due to a 

short dipole at a distance r on the axis 

of the dipole in terms of the dipole 

moment p)
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(already derived)

ED


0=

)sincos2(
4

1
3 


aap

r
D r


+=

)sincos2(
4

1
3 


aap

r
H rm


+=

   toanalogous  is  HD


(expression for magnetic field due to a 

short dipole at a distance r at an angle 
from the axis of the magnetic dipole in 

terms of the electric dipole moment pm)
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)sincos2(
4

1
3 


aap

r
H rm


+=

(expression for magnetic field due to a 

short dipole at a distance r at an angle 
from the axis of the magnetic dipole in 

terms of the electric dipole moment pm)
HB

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)sincos2(
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0
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
aa

r
pB rm


+=

Electric dipole Magnetic dipole
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qlp = )( 2aiipm  ==

Analogous electric and magnetic dipole quantities
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Ampere’s circuital law in integral form

Line integral of magnetic field around a closed path of any arbitrary shape 

on a plane perpendicular to a current is equal to the current enclosed by 

the path. 

consideredpath  closed on the Ppoint  aat   field magnetic=H


dl

Closed path
i

P

.

H

 =
l

ildH


Ampere’s circuital law

   current   theofdirection  in the screw  theof

motion axialan  cause  that willscrew a ofrotation  of sense  theisdirection  its and

    is of magnitude thesuch that point  at thector  element velength 

i

dlldld


=
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Let us take up the problem of an 

infinitely long current-carrying wire 
Length element 

dl dla=

Closed circular path

Z
i

r

P

aHH


=

Ampere’s circuital law simplifies the problems that 

enjoy geometrical symmetry in magnetostatics as 

does Gauss’s law of electrostatics. 

A long straight wire along z carrying current i and a 

circular closed path of radius r considered on a 

plane perpendicular to Z axis passing through the 

point P where the magnetic field is to be found

 =
l

ildH


(Ampere’s circuital law)







=

=





adlld

aHH




 =
l

iadlaH 



 =
l

iHdl

The problem enjoys cylindrical symmetry 

and the magnetic field magnitude remains 

constant at all points on the closed path of 

radius r.

 =
l

idlH  =
l

rdl 2

irH =2
r

i
H

2
= 


a
r

i
aHH



2
==
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

a
r

i
H



2
=

Expression for magnetic field due to a long straight current carrying wire has been 

obtained so simply by Ampere's circuital law doing away with the evaluation of 

integrals required in the application Biot-Savart’s law to find the expression.

Let us find the magnetic field both inside and outside a long 

solenoid  carrying a direct current and also its inductance   

Length of the solenoid is considered to be very large compared to the radius of the and 

distance between two consecutive turns of the solenoid. Therefore, we can take the 

magnetic field due to the solenoid to be independent of z. 

Pa b

cd

d

a b

c

P
z

Current directed 

away from reader

Current directed 

towards reader
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Biot-Savart’s law can be used to appreciate that 

the direction of the magnetic field due to  

currents, both out of and into the plane of the 

paper, will be azimuthal, as in the problem of a 

long straight current carrying wire. 

At a point  outside the solenoid, at a radial distance much larger than 

the solenoid radius, the magnetic field contributed by the anticlockwise 

flux lines due to the currents out of the plane of the paper will balance 

the magnetic field contributed by the clockwise flux lines due to 

currents into the plane of the paper, thereby making the magnetic field 

outside the solenoid nil. 

We can also appreciate this with the help of Ampere’s circuital law.   

For the application of Ampere’s circuital law, take a rectangular path abcd in the 

cross-sectional plane passing through the point P outside the solenoid where the 

magnetic field is sought. We purposely take the side cd of the rectangle to be at a 

different distance from its side ab

 =
l

ildH


(Ampere’s circuital law 

applied to path abcd)
   =+++=
daab bc cdabcd

0ldHldHldHldHldH


Current i enclosed by the path abcd is nil since the number of turns 

corresponding to the current going out of the plane of the paper is 

equal to the number of turns corresponding to the current going into 

the plane of the paper. 

Magnetic field outside the solenoid

Pa b

cd

d

a b

c

P
z

Current directed 

away from reader

Current directed 

towards reader
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 =+
cdab

ldHldH 0


   =+++=
daab bc cdabcd

0ldHldHldHldHldH


Magnetic fields transverse to the 

solenoid axis due to the current turns 

cancel out and therefore the 

integrands of the second and fourth 

integrals each becomes equal to 

zero.  

0)()( outsideoutside =−+ 
cd

zz

ab

zz adlaHadlaH


directed oppositelybut   z alongeach  arely which respective cd and ab sides at the

 fields  magnetic  of  magnitudes    theare  and outsideoutside HH 

0outsideoutside =− 
cdab

dlHdlH

0outsideoutside =− lHlH

say  ,cdab l==

outsideoutside HH =

  nil.  toequaleach    and  put   tohave  weTherefore,

axis. solenoid  thefrom distancesdifferent at  are cd and ab since 

fromdifferent   be   willpresent  iffact that   thesContradict

outsideoutside

outside

outside

HH

H

H





0outsideoutside == HH

(magnetic field outside the solenoid is nil)

Pa b

cd

d

a b

c

P
z

Current directed 

away from reader

Current directed 

towards reader
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Magnetic field inside the solenoid

  
  

=+++=
adba cb dcdcba

nlildHldHldHldHldH


  reader.  towardsdirected

paper  ofout   turns theof currents  theencloses and

 Ppoint  he through tpasses  dcbapath  r  Rectangula 

 =
l

ldH law)  circuital  s(Ampere' enclosedcurrent   


 solenoid rough thecurrent th 

solenoid  theoflength unit per   turnsofnumber  

cbda

=

=

==

i

n

l

Magnetic field outside the solenoid being zero, the integrand 

of the third term becomes zero. Magnetic fields transverse to 

the solenoid axis due to the current turns canceling out, the 

integrands of the second and fourth terms each become nil.     

 
 

===
ad dcba

0ldHldHldH





=
ba

nlildH





=
ba

nliadlaH zz






=
ba

nlidlH

Pa b

cd

d

a b

c

P
z

Current directed 

away from reader

Current directed 

towards reader




=
ba

ldl

nliHl = niH =

zaHH


=

zaniH


=

Expression for magnetic field inside the solenoid







=

=

z

z

adlld

aHH



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Inductance of a solenoid

zaniH


= (magnetic field inside the solenoid)

zaniHB


00  == (magnetic flux density inside the solenoid found thus 

uniform over the cross section of the solenoid) 

dSaB
S

nB  =


turnsinglet, (magnetic flux linked with a single turn of the solenoid) 

 nidSnidSaani
SS

zzB 000turnsinglet, === 


(magnetic flux linked with a single turn of the solenoid) 

))(( turnsinglet, nlBB  = (magnetic flux linked with nl turns of length l of the 

solenoid, n being the number of turns per unit length) 

))(())(( 0turnsinglet, nlninlBB  ==

ln
i

nlni

i
L B 

 2

0
0 ))((

===

(Weber or Wb)

(Wb/A or henry or H)

solenoid)  theof area sectional-(cross =
S

dS

(expression for inductance of a solenoid) That the practical unit of permeability is H/m is clear 

from this expression for inductance.
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Inductance per unit length of a coaxial cable


B

Element of strip of 

infinitesimal area 

dr
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Apply Ampere’s circuital law to a closed circular path on a cross-sectional plane 

perpendicular to the axis of the cable of radius r between r = a (radius of the inner 

conductor) and r = b (radius of the outer conductor) carrying current I. You can get the 

following expression for magnetic flux density in the region between the conductors:

(element of magnetic flux density linked with a 

rectangular element of strip of length l, width dr

and area ldr in the region between the 

conductors on a radial cross-sectional plane) 

Magnetic flux linked with the rectangular area 

on a radial plane between the conductors can 

be obtained by integration as follows: 

(expression for inductance and inductance 

per unit length of a coaxial cable)
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Ampere’s circuital law in differential form

E

D

A

B
2a

3a

1a

1 1h du

2 2h du

• P

3dS
Area element

Sense of 

integral rotation
In electrostatics, we obtained Poisson’s equation in point 

form or differential form from Gauss’s law in integral form. 

Similarly, in magnetostatics, we can obtain Ampere’s circuital 

law in differential or point form from its integral form. 

 =
l

ildH


(Ampere’s circuital law in integral form)

Apply Ampere’s circuital law to a closed element of area )( 22113 duhduhdS =

3a


which is taken normal to the unit vector 

in generalised curvilinear system of coordinates, and which encloses the point P where 

to obtain Ampere’s circuital law in point or differential form. 

33. dSaJi




 
l

dSaJldH 33.


current density regarded approximately 

as constant over element of area dS3
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 
l

dSaJldH 33.


E

D

A

B
2a

3a

1a

1 1h du

2 2h du

• P

3dS
Area element

Sense of 

integral rotation

3

3

.aJ
dS

ldH
l 






332211 aJaJaJJ


++=

33332211

3

).( JaaJaJaJ
dS

ldH
l =++

 



3

33 0
J

dS

ldH

S

Lt
l =



→




In the limit  S3 → 0, corresponding to the area element shrinking to the 

point P, the current density may be taken as exactly constant and the 

approximation can be removed from the sign of equality.

33)( JH =


(by the definition of the component of the curl of a vector) 
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33)( JH =


E

D

A

B
2a

3a

1a

1 1h du

2 2h du

• P

3dS
Area element

Sense of 

integral rotation

3a


(taking the area element perpendicular to     )

We have obtained 

11)( JH =


(taking the area element perpendicular to     )

Similarly, we can obtain

2a


1a


22)( JH =


(taking the area element perpendicular to     )

Similarly, we can also obtain

332211332211 )()()( aJaJaJaHaHaH


++=++

Combining the components we then obtain the differential form of Ampere’s circuital law as follows

JH


=

(Ampere’s circuital law in differential form)



36

Lorentz force on a moving point charge in a magnetic field

θ

F

B

v

•q

Show that an electron when it is shot with a dc velocity perpendicular to a 

uniform dc magnetic field of flux density of magnitude B executes a circular 

motion with an angular frequency called the electron cyclotron frequency. 

BvqF


=

r

mv
vBe

2

=

BBr

r

v

r
T







 222
=== B

B

T
c 






 ===

2

22

Br
m

Bre
v ==

A point charge moving with a velocity in a region of magnetic 

field experiences a force called Lorentz force given by

 placed is chargepoint in which density flux  magnetic 

chargepoint  of velocity  

chargepoint  ofamount  

=

=

=

B

v

q





  of magnitude  theis sin FqvBF


=

BvF


product  cross  theofdirection   theis  ofDirection 

Cyclotron frequency

You can balance Lorentz force with the centrifugal force to obtain

electron ofmotion circular  of radius  

motioncircular in electron  of velocity 

electron of ratio mass-to-charge of magnitude  

 mass electronic  

 charge electronic of magnitude  

=

=

=

=

=

r

v

m

e



Time period T of electronic circular motion is given by 

(angular electron 

cyclotron frequency) 

(Lorentz force) 
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Relation between the current density, volume charge density 

and beam velocity in a beam of charge flow 

Consider a current due to the flow of charge particles, for instance electrons, 

taken as point charges all with a constant velocity v. This current is called the 

conduction current in a conducting medium or convection current in a fee-

space medium. 

Consider two identical cross-sectional planes each of cross-sectional area 
separated by a distance numerically equal to v being the distance a charged 

particle covers during a second. Consequently, all the electrons within the 

volume v will flow through a cross-sectional plane of area  in a second. The 

number of such electrons is equal to the number of electrons per unit volume n

multiplied by the volume v, that is n v. Multiplying this number n v by the 

charge e carried by each electron we get the current i = n v e through the 

cross-sectional area  and dividing i by  we get current density J:

envi =

density)(current  /)( vnevenvJ  ===

density) charge (volume =ne

(relation between current density, volume charge density and beam velocity in a 

beam of charge flow) 
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BvendlFd

ndl


−= 

   :electrons ofnumber   on   force Lorentz ofElement 
BvqF


= (Lorentz force) 

Force on a current carrying conductor placed  in a magnetic field

  electrons ofnumber      of

eachby  carried  charge electronic

 of magnitude  theis 

 

ndl

e

eq −=

BldiFd


=

Consider a current element placed in a region of a steady magnetic field (a wire of infinitesimal 

length dl and cross-sectional area  through which a direct current i passes. Let us find the 

element of Lorentz force on the moving charge particles constituting the current element. In the 

length element dl, the number of charge particles is (n)(dl) = n dl, where n is the number of 

charge particles per unit volume of the current element and dl is its volume. Magnetic field is 

assumed over the length element  




=

va

avv

v

v




 ofdirection  in ther unit vecto  theis 

BavendlFd v


−= 

BadlenvFd v


−= ))(( 








−==

=

envenvi

adlld v





(element of force on a current element carrying a direct current  in a magnetic field)

B

dl
Length element

Current 

element idl

 == BldiFdF


Magnetic field even if it is non-uniform may be regarded as constant over the 

element of length dl. However, we have to integrate the element of force over 

the entire length of the conductor to find the force on it due to the magnetic field:   
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BldiFd


= (element of force on a current element 

carrying a direct current  in a magnetic field)

•

Z

Y

1i 2i

Current element 2 2i dl

1 1i dl

Current 

element

d

X

1dl

2dl

Appreciate that  like currents attract and unlike currents repel.

212221 BldiFd


=

Consider two long straight parallel conducting wires carrying direct currents i1 and i2 each 

parallel to z axis. You can express  the force on a current element on the wire carrying 

current i2 due to the magnetic field of the current i1.as 


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

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02221 xz a

d

i
adliFd
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
=
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xz
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d

dlii
Fd

a
d

i
dliFd
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d

i
dliFd












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

2

))(
2
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))(
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)((

2210
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1
02221

1
02221

−=

−=

−=

Negative sign in the above force expression indicates that the force experienced by the wire 

carrying current i2 is in the negative y direction, that is, towards the wire carrying current i1. In other 

words, the force between the wires is that of attraction which means that ‘like currents attract’. If 

the direction of current i2 is reversed to make the two currents unlike, the direction of the element 

of length vector on the wire carrying i2 will also reverse giving 
zadlld


22 =

which in turn gives

ya
d

dlii
Fd







2

2210
21 = which indicates that the force is in the positive y direction or the force is that of 

attraction. This, in other words means that ‘unlike currents attract’.    
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Magnetic Vector Potential due to a Steady Current

Finding magnetic field from magnetic vector potential is an alternative approach to 

Biot-Savarts’ law. We will see that magnetic field can be found from magnetic vector 

potential as electric field can be found from electric potential.   
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Recall Biot-Savarts’ law:
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However, you may note that the second term of the right-hand side of the 

above expression becomes zero since in that term the curl operation is 

taken with respect to the field-point variables (x,y,z) while the current 

element  term on which this operation is taken is represented by the 

source point variables (x/,y/,z/, say):
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where the element of vector potential die to a current element  turns out to be 
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We can find the magnetic vector potential by integration: 
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Find magnetic field due to a long current carrying 

straight wire using vector potential approach
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Consider current element at the point M on z axis at a 

distance z/ from the origin O. The problem enjoys 

cylindrical symmetry. Element of magnetic vector 

potential due to the current element at P (r,,z) is
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Expansion of curl in the right hand side in cylindrical 

system of coordinates and remembering azimuthal 

symmetry of the problem / = 0
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Integration limits taken as z/ = - and z/ =  for a long wire 
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(expression for ,agnetic field due to a long current carrying straight wire 

which is one and the same as that obtained by Biot-Savarts law)



44

Z

X

Y

A

B

Ф

θ

O

Ф'
Ф'

P(r,θ,Ф)
r

lId


lId


You can find magnetic field due to a circular current loop at 

a point off the axis using the magnetic vector potential 

approach however now treating the problem in spherical 

polar system of coordinates unlike cylindrical system of 

coordinates used to treat the problem of a long straight 

current carryong wire.  
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Hope you will be motivated to deduce the following 

expression using the vector potential approach in 

terms of the magnetic dipole moment pm = ia2, the 

other symbols having their usual significance (see 

the text of the book for the details of deduction): 

(expressions which become identical with the expressions predicted 

earlier from the corresponding expressions derived for electric field 

quantities⎯obtained by drawing an analogy between the electric and 

magnetic dipoles)  
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Summarising Notes

 Basic concepts of static magnetic fields or magnetostatics have been developed. 

 Magnetostatic quantities analogous to the corresponding electrostatic quantities have identified.

 Coulomb’s and Gauss’s laws as well as Poisson’s and Laplace’s equations of magnetostatics 

have been developed on the same line of electrostatics.

 Absence of free magnetic charges (poles) makes it possible to write Gauss’ law and Poisson’s 

equation of magnetostatics analogous to those of electrostatics.  

 Gauss’s law of magnetostatics and Poisson’s equation of magnetostatics have been appreciated 

as the manifestation of the absence of free magnetic charges (poles) or that of the continuity of 

magnetic flux lines. 

 Biot-Savart’s law predicts magnetic field due to a current element as does Coulomb’s law predict 

electric field due to a point charge.

 Use of Biot-Savart’s law has been demonstrated in illustrative examples, for instance, in the 

problem of finding the magnetic fields due to a long filamentary steady current, a filamentary current 

of finite length, a circular loop of current and a polygonal loop of current.  

 Ampere’s law has made the problem of finding the magnetic field due to a steady current simpler in 

problems that enjoy geometrical symmetry, as has done Gauss’s law in electrostatic problems. 
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Readers are encouraged to go through Chapter 4 

of the book for more topics and more worked-out 

examples and review questions. 

 Ampere’s circuital law in integral form has been extended to derive the 

law in differential form.

 Force experienced by a moving point charge placed in a magnetic field 

is given by Lorentz force equation.

Concept of Lorentz force equation has been extended to find the force 

on a current carrying conductor placed in a magnetic field. 

 Concept of magnetic vector potential due to a steady current has been 

developed and its application to finding magnetic field as an alterative to 

Biot-Savarts’s law discussed.  


