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Recapitulation of basic concepts of static magnetic fields or

magnetostatics
7;]44364« deall wilth

Coulomb’s and Gauss’s laws of static magnetic fields or
magnetostatics

Biot—Savart’s law

Ampere’s circuital law

Lorentz force experienced by a moving charge in a magnetic
field

Force experienced by a current-carrying conductor in a
magnetic field

Backgrownd

Vector calculus expressions developed in Chapter 2

Basic concepts of static fields developed in Chapter 3 as
some of these concepts are extended to static magnetic fields
in this chapter



Force between a pole of a magnet and a pole of another magnet

expressed by a law analogous to Coulomb’s law of electrostatics:

F_: e i qm1q2m2 C_ir
A r

4m>9m2 © Magnetic charges representing the poles

4, - Unit vector directed from the magnetic point
charge q,,, t0 q,,,»

F.  Distance between the magnetic point charge 9,10 Q.

U: Permeability of the medium

H, -~
Hy

Permeability of a free-space medium

U= :472')(10_7 H/m

(That the unit of permeability is H/m will be appreciated from the
expression of inductance of a solenoid to be derived later, the unit of

inductance being Henry or H)



Magnetic flux density is related to magnetic field as electric flux
density or electric displacement is related to electric field

o
B=uH

Force on magnetic point charge q,, in a region of magnetic flux density
analogous to force on electric point charge in a region of electric field

|

— —

F=q B

Magnetic flux density due to a magnetic point charge q,, at a distance
r is analogous to electric field due to an electric point charge

|

E — Il'lqrr; —’r
Ay

Magnetic field due to a magnetic point charge q,, at a distance ris
analogous to electric displacement due to an electric point charge

|

H="1_5
4y
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Electrostatic
quantities/expressions

Magnetostatic
quantities/expressions

& U
E B
D H
= 49 - Pt mm 5
F_47za‘r2 g 4z 7
F=qE F=g4,B
= q _
E: a _’_ﬂQm—'
47%‘]"2 " B_4ﬂ_r2ar
p=-—1_3g 7=n_g
4rr 4rr
B=8E E:lul:j
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Free magnetic charges do not exist. A magnetic charge is always
accompanied by an equal and opposite magnetic charge as in a
permanent magnet. One cannot separate north and south poles of a
magnet by breaking the magnet.

As many flux lines leave a volume enclosing a pole (magnetic
charge) of a magnet as those enter the volume. Thus, magnetic
flux lines always form closed loops.

In other words, magnetic flux lines are continuous

Free magnetic charges
do not exist

Electrostatics Magnetostatics

analogous

»

§H-dS={H-a,ds=
S S

analogous,

|

§B-dS={B-d,ds=0
S S

./
W&M

0



Free magnetic charges
do not exist

Electrostatics Magnetostatics
S analogous_ _
V-D=p > V-H=0
V-E= I analogous -
£ > V-B=0

AN
Poisson o W&ow 4

Poisson’s equation of magnetostatics is the manifestation
of the absence of free magnetic charges (poles); it is
another way of stating that magnetic flux lines are
continuous.

Electric flux lines (as in an electric dipole) originate from a
positive point charge and terminate on a negative point
charge whereas magnetic flux lines originating from north
pole of a magnet will return to the north pole via south
pole.



Biot—Sovat o Low

Element of magnetic field and element of magnetic flux density due
to a direct current through an element of length of a filamentary
conductor (say, a solid-cylindrical conductor of circular cross-section
of radius approaching zero) is given by

— I di X d R Current element

dH = idi
47R* (v TN

idl xa,

47R*

dB = (pdH) = p1,

Length element vector dl takeson thedirection

of current through filamentary conductor

d, 1s theunit vectar directed from the currentelement to
the point at a distance R wherethe magnetic field and

flux density is sought



W@MQMM% a lon?#m wmmwy,uvg a dire corrent

Wire is aligned along z axis carrying a direct ., A Z
current along z. I

: : P P\
P is point where the magnetic field is sought. " J\\@,ER
O is the foot of perpendicular form P on the W' \\\\ W
length of the wire. K w

AN

O is considered as the origin z = 0. © IPX
OP=r i
Wire extends from z = -o0 to .
Elements of magnetic field and magnetic flux

density are given by:

d[:'I _ ldl X ?R
47R (Biot-Savart’s law)
. . idl xd
dB = (u,dH) = R
(/Jo ) 47Z'R2

idl =current element vector considerd at P’

- de takes the direction of current along a_
idl =idza,

a_ =unit vector considerd along z



dﬁ:ldlxaR -\ Z

47R* z i
idl =current element vector considerd at P’ P\
. dl” | PP =R
idl =idza IR ;o
: N 2
- - woN_
~  idza_xa 0 ’
dH = o P\K
4R
R =distancebetweenP and P’ L i
d, =unit vectordirected fromP to P’
a, =unit vectornormal to theplane of thepaper
m azimuthal direction away from thereader
a,xd,=singd, R
l v =r/2—y
d_xd, =cosyd, sing =sin(z—y")=siny’ =sin(z/2—y)=cosy

a, =unit vectorin azimuthal direction away from the reader

10



a,xda, =cosy a,

G idzd xa, «
47R*
JET = zdzcoil// i,
47R \ z=0P'=OPtany =rtany
l dz =rsec’ ydy
. 2
J _irsec l//dggcosy/ i,
4R
dH = 4”;32 secydy a,
l “—— R=rsecy
dH =" cosy dya,

4 r

— —

1 ¢i i
H=\|\dH =—/|—cosy dya,=——1/| cosy dya
I A d r v avde 47[/"! v oavde

11



dH = —*

cosy dya,
Ay

Integrating over the length of the wire we get

— I

:J.dH:iJ-%‘cosn// dy a,

H _
4 v

I cosy dy a,

For the wire extending from z = -« to «, the integration limits
become y = -4/12 and y = #/2 giving

+7/2

jcosw dy a,

/2

— ) 1
H=——>V,|cosy dwva, =
4727"'“ v avas Arr

<~ PP' =R
v NV
o W
~ P/
VoS




+7/2

_ i _
H=——V|cosy dwva,=H = cosy dy a
| cosy dy a, 47”_!/2 v dy a,
+7/2 l
H = cosy dwd, =——/[sinw]™™'2a
47[1*_7'!/2 y aya, 4727[ wl5a,

H=-""[siny]"2a, =——[sin(z/2)—sin(-z/2)]d, = — (1+1)d,
4 v 4 7r 4 v

H =L(1+1)50 =——a,=—a,
47 4 27r a, =unit vectornormal to theplane of thepaper

mm azimuthal direction away from thereader
(Magnetic field due to an infinitely long

thin wire carrying a direct current)

13



W@M@MW% aThin ﬂwﬁwmofﬁ«nﬁw
avw?.m? a dirvet currend

ﬁ)mﬂ'wén&%wwﬂwww”ﬂ'ﬁmﬂm wilh
M%wmofwm

Wire length AB = OA + OB = [/, | + |1,]

For the wire extending from z = - | 12‘ o |l1 | a, =unit vectornormal to theplane of thepaper

the integration limits become w = y, and y = in azimuthal direction away from thereader
v, giving
. 78 .
— l - l - l . - z
H=——>1/|cosy dya, = cosy dya,=——>/|siny ]’ a
477[ v dy d, 47”’;”[ v dyd, = —[siny]} a, A
~ i i A | L=Z=]]]
H :—[sinl//];’fz a, =——(siny, —siny,)a, |I| )
4727 47Z7" Sin()”l :—l o e P
w/|11|2 +7° vz
S
~ 1 1 _ A
H = + G, siny,=—2—
dzr| Jiar o 1+ L) e | BrFen

(Magnetic field at a point not symmetric with respect to the wire length)
14



Poind where o Mma,wﬂ'w M WVMW WWW
7o The wire longlh of fin s longglh

Wire length AB = OA + OB = | [, + |I,| =l12+l)2 =1

a, =unit vectornormal to theplane of thepaper

1 1 _
+ Ay in azimuthal direction away from thereader
e i+ i 1)

T
I

I 1 1 -
+ a
dxr( J1+72 /1727 J1+77 /(z/z)zj ’

H =
A
ot 2 a, Jhf=i2
4| 1+ /(1/2) p
0
] 1 . al=112
== a9
27| 1+ 2r /1) 2

(Magnetic field at a point symmetric with respect to the wire length)

15



W@M@MMMM%&&& cirenlor loof«ofwmcm?ing a divecd
cunrrvesd

- idl xa -
dH =" X?R (Biot-Savart’s law)

S~ [di =did,

a, =—da,
R=a

i
<

. Current ~
element iu.

‘\

Current loop

i i, _idld))x(<d,) _~idld,xd, _idld

47 R’ 4ra’ dra®  4Ard®
Idlz27ra
= j 47za jdl
ﬁzjdﬁl 47ra Idl—4ﬂ;2 2ra
H—Za

(magnetic field at the centre of a a circular loop of wire carrying a direct current)



Wagn&ﬁl& M A The ceriAre of a *w?wéw fo%oml
loopofwm awwy_m? a dirvec currend

a = perpendicular distance of each side of the polygon
from its centre N

Al = length of each side of the polygon

Recall the expression for magnetic field due to a straight \
wire of finite length

2727\ J1+2r /1)

P { 1 J%\ |

Magnetic field at a point symmetric with respect to the wire length
(Mag P y P gth) —

l [=Al
|

Ay

H=_" 1 ~ r=a
277\ J1+(2a/ Al)?

(Expression for the magnetic field at the centre of the
polygon loop of wire carrying a direct current due to a
single side of the polygon)

X

17



H=-_" ! a,
277\ J1+(2a/ Al)?

(Expression for the magnetic field at the centre of the
polygon loop of wire carrying a direct current due to a
single side of the polygon)

o
ﬁzz l 1 )&,Z

(
T~ 27ma 1+ (2a/AlY

(Expression for the magnetic field at the centre of the
polygon loop of wire carrying a direct current due to n
sides of the polygon obtained by summing up the
contributions of sides)

n>>1
a4 5> AJ for large number of sides of the polygon

B . 1 B : B : B

H = ! az=;2ZAlaZ= ! s 2maa, =
w 2mal \J(2a/l Al)? dra” = 4 a 2

Expression becomes identical with the expression for magnetic field at the

centre of a circular loop of wire carrying a direct current, for large number of

sides of the polygon when the latter tends to become a circle!

18



W@M@MW% a cirvewlar loopofwmmay_in, a diret currend ot a
Fomﬂ"é}m, ow%mofﬂo loopo#fwm B cenAre

P is the point on the z-axis, at a distance d from the

V4
centre O of the circular current loop, where the
magnetic field is to be found o
OP=d
Two current elements are considered at d
two opposite points S and S' on diameter. A, s
Element of magnetic field at P due to current element at S: 03 a, -
— S ﬁf
dH = L XfR (Biot-Savart's law) “
47R
X
l T~ (idi=ida,
B L R=Ra,
d~:ldl><c;R:zdla9><3R F_SP
4 R 47 R \
- idld,xSP

dH = 3
47 (SP)



Element of magnetic field at P due to current element at S:

. idld, <SP a =radius of the circular current loop .

47(SPY '

w_ SP=R=(a’+d*)" ;
l §=%+@=—805V+OP52 =—aa, +da. d
a,_ s
- idld,x(—aa, +da) = >Y
dH = 49 2L 42" . . O %
m(a”+d”) . |dgxd,=—a, STSa,
C—ia % 52 — C_ir dl
X
i - 84
Ar(a”+d")

(element of magnetic field at P

due to current element at S)

20



Element of magnetic field at P Element of magnetic field at P

due to current element at S due to current element at S’
-~ idl(aa. +da
dH = ( e 3r/2
Ar(a”+d")

(with a. in opposite directions at S and S’ on diameter)

While summing up the contribution to the magnetic field at P due to all
diametrically opposite current elements, the second term containing the unit
vector will cancel out since unit vectors at diametrically opposite points though
equal in magnitude are in opposite directions.

~ . idlaa iaa
H: dH: z = z dl
I J‘47r(a2+a’2)3/2 47z(a2+d2)3/2-[ - Idl:27m
. 2=
- iaa,
H = 2, 12,32
dr(a” +d”)
. 2
H= ta ;7 (magnetic field due to a circular loop of wire carrying a direct

2a*+d*)* 7 currentata point lying on the axis of the loop off from its centre)

21



)
rLa

H=
2(a2+d2)3/2

a. (magnetic field due to a circular loop of wire carrying a direct

o =m’ =area of circular current loop

'

. .2 .
— ra - 17 1o
H =

—

ma. = a. = a
dr(a® +d*)"? © 2@t +d*)Y? 7 2m(at+dP)? T

Special case: d =0

= 1.
H=—a,
2a
p,, =i =magnetic dipole moment

[:'[:ia_. /

a
3
2ma”

H= 2Pm3 . \
a
\

(magnetic field at the centre of a a circular loop of wire carrying a direct current as a
special case d = 0)

" currentat a point lying on the axis of the loop off from its centre)

22



Magw&ﬂla a‘ffolo momend

E-—L G
27 v
p = ql (electric dipole moment)

(expression for electric field due to a
short dipole at a distance r on the axis
of the dipole in terms of the dipole
moment p)

E=

4re v

(expression for electric field due to a
short dipole at a distance r at an angle

3

P
2m

H=

QY

3 z
p, =ia (magnetic dipole moment)

(expression for magnetic field at the centre of a
a circular current loop of wire)

p(2cosba,. +smnba,)

6 from the axis of the electric dipole in
terms of the electric dipole moment p
(already derived)

l

ol
[l

H=

drr

3

p(2cosba, +sinba,)

| -

p,,(2cosBa,. +sinba,)

D is analogous toH

(expression for magnetic field due to a
short dipole at a distance r at an angle 6
from the axis of the magnetic dipole in

terms of the electric dipole moment p,,)

23



—

H =

4 r’

p,,(2cosfa, +sinba,)

(expression for magnetic field due to a

short dipole at a distance r at an angle 6

from the axis of the magnetic dipole in B = ﬂoﬁ
terms of the electric dipole moment p,,)

= 1 e
B= ﬂpm —(2cosba, +sinba,)
r

4

Analogous electric and magnetic dipole quantities

Electric dipole Magnetic dipole
~ 1 — - 1
E= 2cos@a, +sin Od _Ho, G +sinfa
py—— P( r 0) B py D 3 (2cosfa, +sinba,)
1/47, Uy 4r
& 1/ 14
p=ql p,(Fia=ira’)
D=——p(2cosba, +sin0d,) | H=——p,(2c0s0d, +sin0d,)
Tr drr

24



Grpere s cirenilal baw mad'z?mlfom

Line integral of magnetic field around a closed path of any arbitrary shape .
on a plane perpendicular to a current is equal to the currentenclosed by .~ =<~ 1"\

the path. // ™
\ / (27 P N \
ifﬁ dl =i <— Ampere’s circuital law |I \
|
! \
\ AN
B \ Gi I Closed path
H =magneticfield at a point P on theclosedpath considered \\ //
. . \ /
dl =length element vectorat thepoint such thatthe magnitudeof dl is dl 7

~— _ -
and its direction is thesenseof rotation of a screw that willcausean axial motion

of thescrewin the direction of the currenti

25



ﬂmfm 2 cirewilal boaw MWM% }nollam&M

does %«w@ baw of deHroAoics.
LA wsTee wpThe problem I i
WT &Mﬁf & 0 M‘/ - -~ CH—LULU
W 57. 2 erd- f ' ; / / P :\ Length element
€ 'VL? cuntt -OWW?M wite / 7, \
[ 7 \
A long straight wire along z carrying currentjand a \ I |
circular closed path of radius r considered on a / .
\
plane perpendicular to Z axis passing through the / \ // Closed circular path
point P where the magnetic field is to be found N 7
:fﬁ'di =i  (Ampere’s circuital law) <«— H =Ha, B
: di = dla,
{Ha,-did, =i
l l The problem enjoys cylindrical symmetry

constant at all points on the closed path of

and the magnetic field magnitude remains
§ Hl =i —
! radius r.

Hifdlzi - §d1=27zr
/ [

Mgei — H=e—'" —  H-Hi=—"15
=l 2 O o 26



H=—'-g,
2mr
Expression for magnetic field due to a long straight current carrying wire has been
obtained so simply by Ampere's circuital law doing away with the evaluation of

integrals required in the application Biot-Savart’s law to find the expression.

ﬂﬂ' 2% fwwé The maﬁnﬂfio fl«&% bttt inside and ovilside o Zong
solenoid oa/w?vng a e corrend and ablpo B indudance

Magnetic field A _o P b / ¢’
lines
® @0® 0 ® ®|® ®® ® ®|®
!/
a / b
Turnsof — e em— — e eem ¢ e o e e P —————— [ 3 Z

solenoid

QBRI O @ @ @ ®® 8 ®

) @ Current directed
7 d - c away from reader

|
| * @ Current directed
towards reader

Length of the solenoid is considered to be very large compared to the radius of the and
distance between two consecutive turns of the solenoid. Therefore, we can take the
magnetic field due to the solenoid to be independent of z.

27



Biot-Savart’s law can be used to appreciate that A <o b i c'
the direction of the magnetic field due to ® 0loe®l® @|l® o @ @@
currents, both out of and into the plane of the I A P’» ,

paper, will be azimuthal, as in the problem of a

long straight current carrying wire. S L R

Current directed
d c away from reader

Pagnfic W oviloide The solenoid ® Curentdrected

At a point outside the solenoid, at a radial distance much larger than
the solenoid radius, the magnetic field contributed by the anticlockwise
flux lines due to the currents out of the plane of the paper will balance
the magnetic field contributed by the clockwise flux lines due to
currents into the plane of the paper, thereby making the magnetic field
outside the solenoid nil.

We can also appreciate this with the help of Ampere’s circuital law.

For the application of Ampere’s circuital law, take a rectangular path abcd in the
cross-sectional plane passing through the point P outside the solenoid where the
magnetic field is sought. We purposely take the side cd of the rectangle to be at a
different distance from its side ab

jf[-df:J.Fl-df+.[ﬁ-df+jﬁ-df+'|.ﬁ-d7=0 «— {H-df:i (Ampere’s circuital law
abed ab be cd da S ) applied to path abcd)

Current i enclosed by the path abcd is nil since the number of turns
corresponding to the current going out of the plane of the paper is

equal to the number of turns corresponding to the current going into

the plane of the paper.

28



[-dl de1+dez+de1+de=o dreeb ¢
abed [CBNON (OO} MOBNON RONNONONIONON KO
i ! b'
l — e em— -— efem ¢ em— .a— . —P —————— [ 3 Z
QO IO N I @ R R
® Current directed
J- J- d < C away from reader
ab cd . . @ Current directed
Magnetic fields transverse to the towards reader

- solenoid axis due to the current turns
IHout51deaz (dla)+ j ousiced ;" (—dla,) =0 cancel out and therefore the
ab l cd integrands of the second and fourth

integrals each becomes equal to
H outside Idl - out51de Idl 0 £er0-
ab \ cd

l ab=cd=/, say and H| ., are the magnitudes of magnetic fields
[-H' ..[=0 at thesides ab and cdrespectivdy whichare eachalong z but oppositely directed

outside

out51de

0uts1de

|

H .. =H

outside outside ———p

will be differentfrom

sinceab and cd are at different distances from the solenoid axis.

Contradicts the fact thatif present /..
H!

outside

ot Therefore,wehave toput H_ ... and H! . eachequal tonil
=H A/ p outside outside q

outside —

H

outside

(magnetic field outside the solenoid is nil)

29



P
) A b ! '
Rectangular path a'b’c'd" passesthrough te point P’ )
©@ oloedloeo|le 90 @ 0|0
and encloses the currentsof the turnsout of paper a P b’
_— e | e e e e — - > 7
directed towardsreader. 2ol ole e e @ ® @ ® ®
— — . . Current directed
ff H -dl =current enclosed(Ampere's circuital law) ¢ away from reader
/ @ Current directed
towards reader
[H-dl = jH di+ [ H-dl + [H-dl + [ H-dl =nli
a'b'c'd’ b'c’ c'd’ a’ \
a'd' =b'c'=1

= - T n =number of turnsper unit length of thesolenoid

i =current through thesolenoid

Magnetic field outside the solenoid being zero, the integrand
of the third term becomes zero. Magnetic fields transverse to
the solenoid axis due to the current turns canceling out, the
integrands of the second and fourth terms each become nil.

- H = Ha
H-dl =nli +—< :
alb dl =dla,
Ha_-dla_=nli )
a'b’ j H:Haz
o N L
HJ.dlznlz —— Hi=nli —— H=ni H =nia,
.y 30
d

Expression for magnetic field inside the solenoi



Pndendance of a solenoid

—

H =nia_ (magnetic field inside the solenoid)

|

B=u,H = yynia,  (magnetic flux density inside the solenoid found thus
uniform over the cross section of the solenoid)

Do ginglet turn IE a,dS (magnetic flux linked with a single turn of the solenoid)
S

l / de = a (cross-sectionalarea of thesolenoid)
S

Py ginglet urn = Iyonic_iz -a_dS = ,uoni.[ dS = u,nia (magnetic flux linked with a single turn of the solenoid)

/ S S
Py = (9, singlet wn)(@)  (magnetic flux linked with n/ turns of length / of the
solenoid, n being the number of turns per unit length)

Pp = (D5 gingiet wrm )()) = (Lionix)(nl) (Weber or Wb)

L= ¢—B (onic)al) _ n’al (Wb/Aor henry or H)
l I
(expression for inductance of a solenoid)\> That the practical unit of permeability is H/m is clear

from this expression for inductance.
31



79»memuow7'lonfmofa coaaral cable

Apply Ampere’s circuital law to a closed circular path on a cross-sectional plane
perpendicular to the axis of the cable of radius r between r = a (radius of the inner
conductor) and r = b (radius of the outer conductor) carrying current /. You can get the
following expression for magnetic flux density in the region between the congductors:

|
1
dgy = Byldr < By(= pH ) = o
> . A
dr a b
(element of magnetic flux density linked with a %
rectangular element of strip of length /, width dr
and area /dr in the region between the
conductors on a radial cross-sectional plane) | BT z
LIl dr b1
dp, =—
2w 7
Magnetic flux linked with the rectangular area Element of stripof | /7~
on a radial plane between the conductors can infintesimal area dr

be obtained by integration as follows:

b
_ Ml pdr ol b
dy = [dgy = 1| =L ],

a

Loll]nb

Mol ud b
=il(lnb—]na)=2_0[1n Inductance:¢—3: 27 a _ H Ilnb

a a 1 I 27 a
/

Inductanceper unit length :&lné — (expre§sion for inductanpe and inductance
27 a per unit length of a coaxial cable)
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In electrostatics, we obtained Poisson’s equation in point
form or differential form from Gauss’s law in integral form.
Similarly, in magnetostatics, we can obtain Ampere’s circuital hdu,
law in differential or point form from its integral form.

Sense of -
integral rotation -

:ffl-df =i (Ampere’s circuital law in integral form) A
/

\ > current density regarded approximately
Ja,dS, as constant over element of area dS,

12

I

Apply Ampere’s circuital law to a closed element of area dS; (= h,du,h,du,)

which is taken normal to the unit vector d;

in generalised curvilinear system of coordinates, and which encloses the point P where
to obtain Ampere’s circuital law in point or differential form.

———,
T
Q
[1?
<
5~y
QL
l5/)

33



{I:I . d = jﬁ3dS3 Sense of
[

integral rotation

Area element
ds,

=(J,a,+J,a,+J,a;).a, =J,

— In the limit AS; — 0, corresponding to the area element shrinking to the
point P, the current density may be taken as exactly constant and the
approximation can be removed from the sign of equality.

l <— (by the definition of the component of the curl of a vector)

(VXF[)3 =J;

34



We have obtained

Sense of -

(VXH )3 =J 3 integral rotation
(taking the area element perpendicular to a;) du,

Similarly, we can obtain
(VXﬁ)l =J,

(taking the area element perpendicular to 4, )

Similarly, we can also obtain

(Vx H)z =J,
(taking the area element perpendicular to a, )

Combining the components we then obtain the differential form of Ampere’s circuital law as follows
(VxH),d, +(VxH),ad, +(VxH),d, = J,a,+J,a, +J,a,
VxH=J

(Ampere’s circuital law in differential form)
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io»wnz;',/om on a mvm?fowﬂ'aﬁmgam a WMWM
A point charge moving with a velocity in a region of magnetic

field experiences a force called Lorentz force given by
F=qvxB (Lorentz force)

g =amountof point charge g

v = velocity of point charge

B= magnetic flux density in whichpoint chargeis placed ¢ >
F = qvBsin @ is the magnitude of F
Direction of F is thedirection of thecrossproductv x B

Cpeltion froquency 1'

Show that an electron when it is shot with a dc velocity perpendicular to a
uniform dc magnetic field of flux density of magnitude B executes a circular
motion with an angular frequency called the electron cyclotron frequency.

You can balance Lorentz force with the centrifugal force to obtain

2 ‘e‘ = magnitude of electronic charge
‘e‘vB - :
7 m = electronic mass
l ‘77‘ = magnitude of charge- to-massratio of electron
‘e‘Br

= [n|Br v = velocity of electronin circularmotion
r =radius of circularmotion of electron
Time period T of electronic circular motion is given by
27zr:27zr:27z . a):2_7z 27[
v |7|Br |n|B ©T

T = =y|B  (angular electron

cyclotron frequency) 36
\U\B



Eelition bAween The currend My, volume charge My.
MWV&&M?M P M%M&f&w

Consider a current due to the flow of charge particles, for instance electrons,
taken as point charges all with a constant velocity v. This current is called the
conduction current in a conducting medium or convection current in a fee-
space medium.

Consider two identical cross-sectional planes each of cross-sectional area «
separated by a distance numerically equal to v being the distance a charged
particle covers during a second. Consequently, all the electrons within the
volume vea will flow through a cross-sectional plane of area « in a second. The
number of such electrons is equal to the number of electrons per unit volume n
multiplied by the volume ve, that is n va. Multiplying this number n va by the
charge e carried by each electron we get the current /i = n va e through the
cross-sectional area « and dividing i by « we get current density J:

i =nvae ne = p (volumechargedensity)

/

J =(nvae)/ a = nev= pv (currentdensity)

(relation between current density, volume charge density and beam velocity in a
beam of charge flow)



Force on a M&Mm.; wn«M@M tn magwéf'wfwu
Consider a current element placed in a region of a steady magnetic field (a wire of infinitesimal
length d/ and cross-sectional area « through which a direct current i passes. Let us find the
element of Lorentz force on the moving charge particles constituting the current element. In the
length element dl, the number of charge particles is (n)(dla) = n dla, where n is the number of
charge particles per unit volume of the current element and dl« is its volume. Magnetic field is
assumed over the length element

— F=qgvxB (Lorentz force)

Element of Lorentzforceon ndla numberof electrons: g=-— e‘
dF =—ndlaley x B ‘ le]is themagnitude of
\ electroniccharge carriedby each
v=va, | of ndla numberof electrons
a, is theunit vectar in the direction of v Z
v

dF = —ndla‘e‘vﬁv x B Current

element id,

Length element
o’ gd[

dF = (-nvald)(dia,)xB ~«—— 4 =da, j

I=nvoe= —nva‘e‘

dF =idl x B (element of force on a current element carrying a direct current in a magnetic field)

Magnetic field even if it is non-uniform may be regarded as constant over the
element of length dl. However, we have to integrate the element of force over
the entire length of the conductor to find the force on it due to the magnetic field:

ﬁ:jdﬁ:Iidixé
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Consider two long straight parallel conducting wires carrying direct currents i, and i, each
parallel to z axis. You can express the force on a current element on the wire carrying

current i, due to the magnetic field of the current i, as

dF,, =i, a’lﬁ2 xB, dF =idl x B (element of force on a current element

‘\carrying a direct current in a magnetic field)
l : B, =—1, 5 al y a_ (obtainable using Ampere's circuital law)

m L -
dF,, =i, (dl,a,)x(u, ) 1d a.) R d *
i dl, =dla, i i
dﬁ'ﬂ = i2 (dl2)(_/u0 ll )(c_iz X ax) di, Current element i,d.,
272' Current
dE, =i, (dL)(u ——)@.) e
21 2 \dhy )(Hy omd

X ® Y
dF, =————=a d
! 2rd 7 }» <|

Negative sign in the above force expression indicates that the force experienced by the wire
carrying current i, is in the negative y direction, that is, towards the wire carrying current /,. In other
words, the force between the wires is that of attraction which means that ‘like currents attract’. If
the direction of current i, is reversed to make the two currents unlike, the direction of the element

of length vector on the wire carrying i, will also reverse giving gy = 41,5

which in turn gives

dF,, = May which indicates that the force is in the positive y direction or the force is that of
2rd attraction. This, in other words means that ‘unlike currents attract'. 39
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Finding magnetic field from magnetic vector potential is an alternative approach to

Biot-Savarts’ law. We will see that magnetic field can be found from magnetic vector
potential as electric field can be found from electric potential.

Recall Biot-Savarts’ law:

Curreng element

- (id
JiT - idl xa, T
47R?

idl xa, B
47Z'R2 - ClRZR/R

dB = (u,dH) = 11

—~ - R
dBZ&ileE -«— V(lj 1R

4

|

L | GXVW=WXG—VX(WG) (vectoridentity)
n_ 0+ 7 - -
dB——EleXV(—] < 1G=idl

dB =*o v{lidi—lvxidij
4 R R
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dB =*o v{lidi—lvxidij
4 R R

However, you may note that the second term of the right-hand side of the
above expression becomes zero since in that term the curl operation is
taken with respect to the field-point variables (x,y,z) while the current
element term on which this operation is taken is represented by the
source point variables (X,y/,z/, say): Vxdl =0

v

dE:Vx[&ﬂJ=de2

47 R

where the element of vector potential die to a current element turns out to be

gi= o tdl
47 R
We can find the magnetic vector potential by integration:

szdﬁsz—;%
!

B:de:ijdszXA .



waMwMM% a long M&my_«a,

ﬂmyﬁf wire W veAor Mmfml aff@omﬁ

Consider current element at the point M on z axis at a
distance z’ from the origin O. The problem enjoys
cylindrical symmetry. Element of magnetic vector
potential due to the current element at P (r,6,z) is

-, idZ'a.

U4t R e REPM=IONM) (NPT
l Z[(ZI_Z)2+F2]1/2
A idz'a.

CAx (2 -z) +r2]"

|

- - / dz'a
B:.[VXdA:IZ_j;J.VX[( 24,

Z'—2) +r°]

1/2

dz'

a
oo "

/
/
/
QU

Expansion of curl in the right hand side in cylindrical

l system of coordinates and remembering azimuthal
symmetry of the problem 476 =0

= dz'a 0 dz'

B=V z - G, «——R=PM=[(Z'-z2)*+r*]"

X[(z'—z)2+r2]l/2 _5[(2’—2)2”2]”2 0

|

D /JOZ r 1=
B="|—dza
4ﬂ-[R ¢

42



. y=r/2

Kol

/2

/2

-~ I . —
B=tb [siny]";),a,

Ay

e B

Z'—z=rtany

dz' =rsec’ ydy

R =rsecy
i v=r/2
I’SGCzl/IdWC_iHZZI—O jcoswdwﬁg
y=—m/2

= 2 [sin(z/2)-sin(-7/2)]G,
drr

_ Hyl [1_(_1)]&’0 :&259
Ay

Adrr

B=tG <« H=B/y

Integration limits taken as z/ = -o0 and z/ = « for a long wire

dz'

a
oo "

(expression for ,agnetic field due to a long current carrying straight wire
2y which is one and the same as that obtained by Biot-Savarts law)

Q)
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You can find magnetic field due to a circular current loop at z
a point off the axis using the magnetic vector potential
approach however now treating the problem in spherical
polar system of coordinates unlike cylindrical system of
coordinates used to treat the problem of a long straight
current carryong wire. 0 P(0,0)

Hope you will be motivated to deduce the following (.. .=
expression using the vector potential approach in 1dl D A
terms of the magnetic dipole moment p,, = iza?, the 1dl
other symbols having their usual significance (see @
the text of the book for the details of deduction):

. 2
Ml a
3

B=

(2cosfa, +sinba,)
4rr

H= p, (2c0s6d, +sin 6a,)

4 r’

(expressions which become identical with the expressions predicted
earlier from the corresponding expressions derived for electric field
quantities—obtained by drawing an analogy between the electric and
magnetic dipoles)



Summarising Pltes

\ Basic concepts of static magnetic fields or magnetostatics have been developed.
v Magnetostatic quantities analogous to the corresponding electrostatic quantities have identified.

\ Coulomb’s and Gauss’s laws as well as Poisson’s and Laplace’s equations of magnetostatics
have been developed on the same line of electrostatics.

\ Absence of free magnetic charges (poles) makes it possible to write Gauss’ law and Poisson’s
equation of magnetostatics analogous to those of electrostatics.

\ Gauss’s law of magnetostatics and Poisson’s equation of magnetostatics have been appreciated
as the manifestation of the absence of free magnetic charges (poles) or that of the continuity of
magnetic flux lines.

\ Biot-Savart’s law predicts magnetic field due to a current element as does Coulomb’s law predict
electric field due to a point charge.

\ Use of Biot-Savart’s law has been demonstrated in illustrative examples, for instance, in the
problem of finding the magnetic fields due to a long filamentary steady current, a filamentary current
of finite length, a circular loop of current and a polygonal loop of current.

\ Ampere’s law has made the problem of finding the magnetic field due to a steady current simpler in
problems that enjoy geometrical symmetry, as has done Gauss'’s law in electrostatic problems.
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\ Ampere’s circuital law in integral form has been extended to derive the
law in differential form.

\ Force experienced by a moving point charge placed in a magnetic field
is given by Lorentz force equation.

JConcept of Lorentz force equation has been extended to find the force
on a current carrying conductor placed in a magnetic field.

\ Concept of magnetic vector potential due to a steady current has been
developed and its application to finding magnetic field as an alterative to
Biot-Savarts’s law discussed.

Keaders are mooma?w‘% go ﬂzw«?/» Ww ¢
off/w book fo@ mw%ﬁw and more worked-oot

mmf&w ond veview rw&ﬁlow.
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