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Engineering Electromagnetics Essentials

Chapter 3

Basic concepts of 

static electric fields
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Objective

Recapitulation of basic concepts of static electric fields or 

electrostatics

Topics dealt with

Coulomb’s law 

Gauss’s law 

Electric potential 

Poisson’s and Laplace’s equations

Background

Vector calculus expressions developed in Chapter 2
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A: x1, y1, z1

B: x2, y2, z2

Coulomb’s law

:1q

:2q

Point charge at A

Point charge at B

Permittivity of a medium : [C2/N-m2 or F/m]

[Newton or N]

[Coulomb or C]

[Coulomb or C]

[metre or m]

[metre or m]

(That the unit of permittivity is F/m will become clear from the 

expression for the capacitance of a parallel-plate capacitor to 

be derived later, the unit of capacitance being Farad or F).  
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Rationalized MKS system of unit is followed.

The rationalization factor        introduced in Coulomb force expression 

removes the appearance of this factor from many extensively used 

expressions derived from Coulomb force expression.
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Relative permittivity or dielectric constant

0


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:0 Permittivity of a free-space medium

r

Coulomb force is maximum in a free-space medium.
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0 10854.810)36/(1 −− ==  C2/N-m2 or F/m
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The problem is to find the force on a point charge     placed at a corner A    

of a square on a plane due to three identical point charges each  placed 

at the remaining three corners B          , C              and D            of the 

square, respectively, located in rectangular system of coordinates, one of 

the corners, namely, A being at the origin of the coordinates 

)0,0(q

)0,(a ),( aa ),0( a

Use Coulomb’s law to find electrostatic force 

xa
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D
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(0,a) q q

q q

X

Y
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Take up another problem for the use of Coulomb’s law

Two small identical metallic charged balls, each of charge q and mass m = 1 gm, 

hung by a long thread of length l = 1 m from a common point (hook), get separated 

from each other by a distance d = 2 cm due to electrostatic repulsion and is set to 

an equilibrium on the  vertical plane. Find the value of the charge q. 

.cossin  mgFT +=

At equilibrium, the tension T in the string 

balances a component of the Coulomb 

force and a component of the   

gravitational force put together as 

follows:

Also, at equilibrium, a component of 

the gravitation force will balance a 

component of the Coulomb force to 

staify the following relation:

 sincos mgF =

mgd

q
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tan
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From geometry

θ
θ
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Fcosθ
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Tsinθ
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mg sinθ
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and putting m = 1 gm , l = 1 m and d = 2 cm, you can calculate each charge q as 
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0 10854.8 −=Remembering F/m

910088.2 −=q C nC. 088.2=
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Electric field due to a point charge and electric field 

due to a distribution of charges

The force on a point charge q2 due to the another point charge q1, given by Coulomb’s 

law, can be interpreted as the electric field caused by the point charge q1. 
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Electric field due to the 

point charge q1

In general, the electric field due to 

point charge q is then given by

Electric field due to a point charge

In general, the electric field due to 

the point charge q is then given by

EqF
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An electron moves along x with a velocity 2 cm/s in a region of uniform electric 

field of 5 kV/cm along z. What is the force on the electron? 

Take up the following simple problem

Force on point charge q due to electric field is 

given by

N 108106.1105 14195

zzz aaaEeEeEqF


−− −=−=−=−==

zaEeE


=

V/m 10510105kV/cm 5 523 ===E

C 106.1 19−−=−= eq

Answer:

Electron carries a negative charge and it may 

be regarded as a point charge q:

Electric field magnitude is given as 5 kV/cm 

along z: 
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Electric field due to a long uniform line-charge distribution

Charge is uniformly sprayed over a long line along z axis

Medium is a free-space medium

The length of the line is very large compared to the distance of the point 

P is the point where the electric field is sought.

OP = d is the perpendicular distance of P from 

the long line charge distribution.

O is the foot of perpendicular drawn from P to 

the long line charge distribution. 

A and B are the two points symmetrically 

located with respect to O on each of which 

equal amounts of line charge elements are 

considered (OA = OB).    

=dzl Charge element each on A and B to be regarded 

as point charges

=l Charge per unit length or line charge density 

of the line charge distribution

O

A

B

P

OA = z

OP = d

BPa


na


APa


l
dz

l
dz



 


E

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Normal components of element of electric field at 

P due to the charge elements at A and B will add 

up in the direction of       .na


Find out the components of element of electric field, due to a charge 

element on the line charge distribution, in directions parallel and 

perpendicular to the line.

Parallel components of element of 

electric field at P due to the charge 

elements at A and B ⎯ equal and in 

opposite directions ⎯cancel out. 
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Elements of electric field component will 

add up in the direction of      .  na

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For the length of charge distribution very large 

compared to the distance d of the point P, you can 

integrate the above expression between the limits  z = 0 

and  and take twice its value to find the magnitude of 

the electric field in the direction of       . The limits z = 0 

corresponds to            and z =  corresponds to             .
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For the length of charge distribution very large 

compared to the distance d of the point P, you can 

integrate the above expression between the limits  z = 0 

and  and take twice its value to find the magnitude of 

the electric field in the direction of       . The limits z = 0 

corresponds to            and z =  corresponds to             .
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Alternatively, the above expression can be very easily derived by Gauss’s law yet to be 

introduced. 
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Electric field due to a uniform planar surface-charge distribution 

with a circular boundary at a perpendicular distance from the 

centre of the circle 

Uniform surface charge density=s

Radius of the circular boundary of charge distribution=a

=z ),0,0(P zPerpendicular distance of                where 

to find the electric field                      

Ed =


=r Radius of an annular charge ring 

Charge is uniformly sprayed over XY plane within a circular 

boundary 

Z
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Y
r

dr

P
(0,0 , z)
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s
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z
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Approach: 

Step 1: Find the sub-element of 

electric field at the point P due the 

sub-element of charge on an 

annular ring sub-element of 

infinitesimal radial thickness.

Step 2: Find the element of electric 

field at the point P due to the 

charge on the entire annular 

charge ring by integrating the sub-

element of electric field obtained in 

Step 1.

Step 3: Integrate the element of 

electric field obtained in Step 2 to 

find the electric field at P due to the 

entire circular charge distribution. 
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=s Surface charge density

Step 1:

=drrd Area of the ring sub-element at S 
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changes with the position of S, that is, 

from one sub-element of charge to 

another on the annular charge ring since 

their directions change even though their 

magnitudes remain the same as unity. On 

the contrary       does not change so. 
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Alternatively, the above expression can be very easily derived by Gauss’s law yet to be 

introduced. 

The electric field near a large area of 

charge distribution⎯large sheet of 

charge⎯ becomes
az 

)( az 

nz aa


=Interpreting 

Electric field near a large sheet of charge becomes
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Gauss’s law

Life becomes simple while finding electric field in problems, if you 

can do away with the integrations involved in the application of 

Coulomb’s law to such problems!

For problems that enjoy geometrical symmetry⎯rectangular,  

cylindrical or spherical ⎯one can apply Gauss’s law to make the 

solution to such problem very simple. You can avoid carrying out 

complex integrations to find electric field which would be otherwise 

necessary if you would apply Coulomb’s law to such problems.    

Let us state Gauss’s law and prove it starting from 

Coulomb’s law.

Gauss’s law can be stated in terms of electric field and electric 

displacement.
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Electric displacement        is related to electric field      .

ED


=

=Dd

E


D


dSaDSdDd nD


==

=dS

=na


Element of flux of electric displacement

Element of area

Unit vector normal to the element of area

 ===
S

n

SS

DD dSaDSdDd




Element of flux of electric displacement Dd=

Flux of electric displacement D=

Flux of electric displacement through a closed volume

  ==
S S

nD dSaDSdD




D=

Involves closed surface integral

na


D


dS
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  ===
S S

nD QdSaDSdD




Flux of electric displacement through a closed volume

  ==
S S

nD dSaDSdD




D=

Involves closed surface integral

Outward flux of electric 

displacement
D=

  ===
S S

nE

Q
dSaESdE






E=

=Q Charge enclosed

Gauss’s law states that the outward flux of electric displacement through the 

surface of a volume enclosing a charge  —estimated by a closed surface integral 

of      over the area of the volume enclosure—is equal to the charge     

enclosed, .

QD


D


Q

Outward flux of electric 

displacement

ED


=

D of in terms stated becan  law sGauss'

ty)permittivi medium ( =
Gauss’s law
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• Let us prove Gauss’s law

• Let us apply the law to problems that 

enjoy geometrical symmetry ⎯rectangular,  

cylindrical or spherical

Proof of Gauss’s law

  ==
S S

nD dSaDSdD




Take a point charge     inside a volume 

enclosure

q

ra
r

q
E


24

=

ED


=

rr a
r

q
a

r

q
ED


22 44 

 ===

 =
S

nrD dSaa
r

q 
24



 ==
S S

D dS
r

q
SdD 


 cos

4 2

 cos= nr aa


ra


is directed from O to P. 

OP = r

O

P

q
Solid angle 

element dΩ

Area element 

dS

θ

E

n
a


r
a

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  ===
S S S

nD
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dSq
dS

r

q
dSaD
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cos

4
cos

4











= d
r

dS
2

cos

Charge     inside a volume enclosureq

q
q

d
q

dSaD
SS

nD ====  )4)(
4

(
4







(Solid angle element 

subtended by area 

element at P)

What will be the outward flux of 

electric displacement if a number of 

point charges, instead of a single 

point charge q, are present within the 

volume enclosure?  

  ==
S S

nD dSaDSdD




OP = r

O

P

q
Solid angle 

element dΩ

Area element 

dS

θ

E

n
a


r
a


qdSaD
S

n =


(Gauss’s law)
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Outward flux D of electric displacement if a number of point 

charges q1, q2, q3, ……qn,, instead of a single point charge q, are 

present within the volume enclosure  

   +++==
S S
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

  ==
S S

nD dSaDSdD




QdSaD
S

n =


(Gauss’s law)

ED


=



Q
dSaE

S

n =


You have thus proved Gauss’s law)!

(Gauss’s law)
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Gauss’s in terms of volume charge density

nqqqqQ ........321 +++=

n

S

nD qqqqQdSaD ........321 +++=== 
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ddSaD
S

n




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


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dSaE
S
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

(Gauss’s law in terms of volume charge density)
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Application of Gauss’s law to a problem that enjoys 

rectangular symmetry

na


Cross section of planar charge sprayed over a 

very large area on XY plane. X is perpendicular to 

the plane of the paper directed away from the 

reader. Gaussian volume (rectangular 

parallelepiped is also shown.      

Find the electric field at a point near a large planar

sheet of charge of uniform surface charge density.

Approach:

Step 1: Appreciate that the 

direction of electric field at a 

point P near the sheet of charge 

is in the direction perpendicular 

to the the plane of charge in the 

direction of      . 

In other words the electric field is 

along Z axis:              .naa


=z

Step 2: Find the magnitude 

of electric field E at P using 

Gauss’s law. 

naEE


=Srep 

3: .                                         

.

Y

Planar sheet of 

charge

Gaussian 

rectangular 

parallelopiped

Z
O P

(b)

A B

CD

X
zn aa


−=

zn aa


−=
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Cross section of a planar sheet of 

charge and Gaussian volume 

(rectangular parallelepiped)

Consider on the planar sheet of charge, 

supposedly positive, a pair of identical charge 

elements each treated as a point charge 

symmetrically placed with respect to the point 

P. 

Appreciate the following with the help of 

Coulomb’s law, 

(i) The magnitudes of electric field at P due to the 

pair of charge elements are equal. 

(ii) The direction of electric field at P due to a 

charge element of the pair of charge elements 

is from the charge element to the point. 

(iii) The components of electric field due to the 

charge elements of the pair parallel to the 

plane of the sheet of charge are equal in 

magnitude and opposite in direction and they 

cancel out.

(iv) The components of electric field due to the 

charge elements of the pair perpendicular to 

the plane of the sheet of charge add up in the 

perpendicular direction. 

naEE


= (Step 1)

Y

Planar sheet of 

charge

Gaussian 

rectangular 

parallelopiped

Z
O P

(b)

A B

CD

X
zn aa


−=

zn aa


−=
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BC) face(right  field Electric naE


=

The areas of the faces AD (left) and BC (right) are equal and each much smaller 

than the area of the large sheet of charge considered. Therefore, the magnitude of 

electric field can be regarded as constant over each of these faces.

The faces AD (left) and BC (right) 

are equidistant from the sheet of 

charge. Following step 1

AD) face(left  field Electric naE


−=

Cross section of a planar sheet of 

charge and Gaussian volume 

(rectangular parallelepiped)

Y

Planar sheet of 

charge

Gaussian 

rectangular 

parallelopiped

Z
O P

(b)

A B

CD

X
zn aa


−=

zn aa


−=
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Left face AD and right face BC of closed 

rectangular parallelepiped Gaussian 

volume are equidistant from the planar 

charge distribution. Right face BC 

passes through P. 

Cross section of a planar sheet of 

charge and Gaussian volume 

(rectangular parallelepiped) passing 

through P

 BC faceright   tonormaloutwardly r unit vecto =na


AD faceleft   tonormaloutwardly r unit vecto  =− na


0)faceleft()faceright(

)()(


 S
dSaaEdSaaE s

S

nn

S

nn =−−+ 




Q
dSaE

S

n =


Upper and lower faces of Gaussian parallelepiped 

do not contribute to the surface integral since the 

electric field is parallel to these faces being 

perpendicular to the sheet of charge.

enclosed charge ofsheet  of area   

BC of area AD of area

=

==

=

S

SQ s

Gauss’s law

charge. ofsheet planar  the

 ofdensity  charge surface  theis s

Y

Planar sheet of 

charge

Gaussian 

rectangular 

parallelopiped

Z
O P

(b)

A B

CD

X
zn aa


−=

zn aa


−=
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n
s aE


02


=

Cross section of a planar sheet of 

charge and Gaussian volume 

(rectangular parallelepiped) passing 

through P

0)faceleft()faceright(

)()(


 S
dSaaEdSaaE s

S

nn

S

nn =−−+ 


(Step 2)

(Step 3)

Y

Planar sheet of 

charge

Gaussian 

rectangular 

parallelopiped

Z
O P

(b)

A B

CD

X
zn aa


−=

zn aa


−=

The areas of the faces AD (left) and BC (right) 

are equal and each much smaller than the 

area of the large sheet of charge considered. 

Therefore, the electric field can be regarded 

as constant over each of these faces and 

taken outside the integral.

0

)2)(


 S
dSEEdSEdS s==+ 

02

sE =

(Electric field near a large planar 

sheet of charge)

density) charge surface  theis ( s
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Gaussian rectangular parallelepiped 

enclosure with its left face passing 

through the conductor and its right face 

through the point where to find the electric 

field

Find the electric field at a point near a large planar 

conductor of uniform surface charge density.



Q
dSaE

S

n =


Follow the same approach and the 

symbols as those used to find the 

electric field near a large planar 

sheet of charge. 

(Gauss’s law)

0)faceleft()faceright(

)()(


 S
dSaaEdSaaE s

S

nn

S

nn =−−+ 


Left face of parallelepiped passes 

through the conductor where the 

electric field E is absent and the 

integrand of the second term is null. 

Therefore, the second term is null,

0)faceright(


 S
dSaaE s

S

nn =


ty)permittivi spacefree  ( 0 === 

Y

Planar conductor

Gaussian rectangular 

parallelopiped

Z
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0)faceright(


 S
dSaaE s

S

nn =


0

 S
ESdSEEdS s=== 

0

sE =

n
s

n aaEE


0


==

(Electric field near a large charged planar conductor) 

Gaussian rectangular parallelepiped 

enclosure with its left face passing 

through the conductor and its right face 

through the point where to find the electric 

field

density) charge surface  theis ( s

Y

Planar conductor

Gaussian rectangular 

parallelopiped

Z



38

Application of Gauss’s law to a problem that enjoys 

cylindrical symmetry

Find the electric field near a long line charge

distribution of uniform line charge density.

r
l

A B

CD

n ra a=
P

Z

Line ChargeGaussian 

Cylinder



Q
dSaE

S

n =


Follow the same approach as that 

used to find the electric field near a 

large planar sheet of charge.

(Gauss’s law)

rn aa


=

rn aEaEE
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 ==
SS

rr
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n EdSdSaaEdSaE


enclosed charge == lQ l

density) charge lineor length unit per  charge ( =l



Q
EdS

S

=



 l
EdS l

S

=
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

 l
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Line ChargeGaussian 

Cylinder

ty)permittivi spacefree  ( 0 === 
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n
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
= density) charge lineor length unit per  charge ( =l

(Electric field near a long line charge distribution)



 l
EdS l

S

=



 l
dSE l

S

= rldS
S

2=
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Application of Gauss’s law to a problem that enjoys 

spherical symmetry

Gaussian

 Sphere
OP = r

O

P

1q

rE Ea=

Area element 

dS

Find the electric field due to a point charge.



Q
dSaE

S

n =
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(Gauss’s law)

rn aa


=

rn aEaEE
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n EdSdSaaEdSaE
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enclosed charge 1 == qQ
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1q

dSE
S

=



Q
EdS
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24 rdS
S
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E


=
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r

q
E


2

1

4
=

raEE


=

(Electric field due to a point charge)
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Electric field and potential

Gravitational 

potential energy

Work required to be done by

spending energy to lift a

particle to a height from the

ground (surface of the earth)

against the gravitational

force is stored in the form

of gravitational potential

energy.

The ground surface is taken

to be at zero reference

gravitational potential.

Electric potential 

energy

Work required to be done by

spending energy to move a

charged particle⎯a point

charge Q⎯from infinity

against the force due to an

electric field to a point is

stored in the form of electric

potential energy W .

Taking the zero reference

potential taken as the

potential at infinity, the

potential V at the point is

given by

V)or  (J/C 
Q

W
V =

The potential at a point is thus numerically equal to the

potential energy of a unit point charge placed at the point.
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)(OP  distance aat   Oat   chargepoint   todue Ppoint  at the Potential 

rrqE

rrqV

==

==


2

04
 

r

Qq
F


=

P)  toO from directedr unit vecto  theis ( ra


ra
r

q
E


2

04
=

Potential at a point due to a point charge
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Electric field as negative gradient of potential

A

B

V V+dV

dR

AB =dR

AN =dn na

θ
N

nE Ea=

EQF


=

A and B are nearby points separated by element of distance AB=dr

The potential is V at every point on the equipotential V.

The potential is V+dV at every point on the equipotential V+dV.

The same electric field exists at A and B and the same force is 

experienced by a point charge at A and B.

 
Q

W
V =

(Force on a point charge at A or B)

B)at  (potential 

A)at  (potential 

dVVV
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B

A

+=
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)( dVVQQV

QVQV

B
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+=
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QdVdVVQQVQVQVdW BA −=+−=−= )(

positive.  makes that negative is or   if

A  toB from  charge  themove  todone be  torequired isWork 

dWdVVV

Q
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Electric field is the negative gradient of potential.

(Definition of gradient of a scalar here V)
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Capacitance of a parallel-plate capacitor (using the expression 

for electric field in terms of the gradient of potential)

AV BV

d

A B

Source of 

Potential
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B

V

V

z

dz

EdzdV

0

Let us consider large dimensions of plates 

compared to the distance between the plates. 

capacitor)  theinside field (electric 

Integrating
Potential of the plate A at z = 0 is VA

Potential of the plate B at z = d is VB

Distance between plates = d

The geometry of the problem enjoys 

rectangular symmetry.

dz

dV
E −= .on only  depends zV
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Capacitance C of the 

capacitor becomes

The unit of capacitance is Farad or F and 

accordingly the unit of permittivity  is F/m.

(Expression for the capacitance of a 

parallel-plate capacitor)
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Take up the following simple problem

What is the area of the plates required for constructing a parallel-plate 

capacitor of capacitance 100 pF using two metal plates using a mica 

spacer of relative permittivity 5.4 that separates the plates by a 

distance of 10-2 cm. 

d

A
C


=

r

CdCd
A

 0

==

Answer:

(given)  

F 10100pF 100C

4.5

m 10 cm 10

12
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Capacitance of a coaxial cable (using the expression for 

electric field in terms of the gradient of potential)

cable coaxial  theofconductor inner   theof Radius =a

)(
2 0

bra
r

E L =




The magnitude of radial electric field in the region between the

inner and outer conductors of a coaxial cable can be found using

Gauss’s law as in the problem of finding the electric field due to a

long line charge distribution already dealt with. Thus we get

cable coaxial  theofconductor outer   theof Radius =b
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The geometry of the problem enjoys cylindrical symmetry. The length of the 

cable is taken large compared to the radial dimensions of the cable. The 

problem becomes one-dimensional. Thus we have here

0//;0/ == zr 

bra 

r

V
E




−=
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conductors ebetween th  difference potential the
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A

B

C

D

P(r,θ,Ф)

θ

O

q

- q

r

X

Y

Z

Electric field of a dipole (using the expression for electric 

field in terms of the gradient of potential)

Two equal and opposite point charges 

separated by a distance constitutes a dipole.

l =  AB = Length of the dipole being the 

distance between the point charges 

q = Charge of the point charge at A 

–q = Charge at the point charge at B

r = Distance of the point P (r,,)⎯where to 

find the electric field⎯from the middle O of the 

dipole.  

Let us consider a shot dipole for which l<<r.  

The problem enjoys azimuhal symmetry: 0/ = 
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(expression for electric field due to a 

shot dipole at a distance r and at an 

angle  from the axis of the dipole in 

terms of the dipole moment p)

(expression for electric field due to a 

shot dipole at a distance r on the axis 

of the dipole ( = 0) in terms of the 

dipole moment p)
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Putting  = 0
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Poisson’s and Laplace’s equations
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ED
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=

Let us take an infinitesimal volume element 
over which we can take the value of volume 

charge density  and that of electric 

displacement D to be fairly constant. If we 

apply Gauss’s law to this volume element, we 

obtain the following approximate relation:

(Gauss’s law) =


ddSaD
S

n




S

ndSaD
 The approximation sign of equality is 

given since over the volume element  , 

the value of volume charge density  and 

that of electric displacement D have been 

regarded as constant.

The relation is made exact and the 

equality sign is given by taking  → 0 

corresponding to the volume element 

shrinking to a point. 

The left hand side is the definition of 

the divergence of a vector here electric 

displacement.  

Poisson’s equation

 ,0For =

0

0

=

=

E

D



Laplace’s equation
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Laplaciam form of Poisson’s and Laplace’s 

equations




= E


(Poisson’s equation in terms of electric field)

02 = V

VE −=





=− )( V




−= V2

With the help of the relation between the electric field in terms of the 

gradient of electric potential we can find the expression for Poisson’s 

equation in terms of potential. 

Putting the volume charge density equal to zero in Poisson’s 

equation so found we get Laplace’s equation in electric potential. 

We can solve these expressions for potential and subsequently find 

the electric field from potential with the help of the relation between 

the electric field in terms of the gradient of potential.  

VV 2)( =

(Poisson’s equation in terms of electric potential)

0=

(Laplace’s equation in terms of electric potential)
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Electric field in the region between conductors at 

different potentials from the solution of Laplace’s 

equation in Laplacian form 

Take the problem of a parallel-plate capacitor. Find the 

expression for electric field in the region between plates.

AV BV

d

A B

Source of 

Potential

0Z = Z d=

X

Z

Y
02 = V (Laplace’s equation in terms of electric potential)
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Integration

A is integration constant

B is integration constant
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(Expression for the electric field in terms of the 

potential difference VA − VB and the distance d

between the plates)
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Take the problem of a pair of large conducting 

plates at a difference of potential forming a wedge. 

Find the expression for electric field in the region 

between plates. Z

X

Y

V=Vo

V=0

θo

The problem  enjoys cylindrical symmetry, 

allowing us to treat it in cylindrical coordinates.

platesbetween  difference Potential 0 =V

angle  Wedge0 =

02 = V (Laplace’s equation in terms of electric potential)
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C1 is integration constant

C2 is integration constant

 = dCdV 1

0at   0 == VV

0at   0  ==V

20 CV =

01 VCV += 

0010 VC += 

0

0
1



V
C −=

0

0

0 V
V

V +−= 


)1(
0

0



−=VV



64

(Expression for electric field at a point located 

between a pair of large conducting plates 

forming a wedge separated by an infinitesimal 

insulating gap, in terms of the potential 

difference V0 between the plates and the wedge 

angle 0)
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 Basic concepts of static electric field or electrostatics have been recapitulated in this 

chapter. 

 Rationalised MKS system has been introduced while writing the expression for the 

electrostatic force between two point charges called Coulomb’s law. The rationalisation 

factor 4 has been introduced in Coulomb’s force expression thereby removing the 

appearance of the factor 4 from many extensively used expressions derived from 

Coulomb force expression, for instance, Gauss’s law.

 Coulomb’s law has been used to find 

 electrostatic force on a point charge due to the distribution of other point 

charges; and 

 electric field due to a point charge as well as the electric field due to a 

distribution of point charges. 

 Finding the electric field by Coulomb’s law has been illustrated in examples of charge 

distribution such as line and surface charge distributions.

Summarising Notes
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 Gauss’s law greatly simplifies the finding of electric field in problems that enjoy 

rectangular, cylindrical or spherical symmetry, which otherwise would become quite 

involved if Coulomb’s law were used instead. 

 Concept of electric potential has been introduced. 

 Expression for the electric field in terms of the gradient of electric potential has been 

derived and illustrated in examples, for instance, in the problem of finding electric field 

due to a short dipole as well as in the problem of finding the capacitance of a parallel-

plate capacitor and the capacitance of a coaxial cable. 

 Poisson’s and Laplace’s equations have been derived from first principles and their 

use illustrated in the problems of finding the electric field in the region between a pair 

of conductors at different electric potentials by solving Laplace’s equation expressed 

in terms of Laplacian of potential. 

 Poisson’s equation in terms of Laplacian of potential has been solved to deduce 

Child-Langmuir’s law for a space-charge-limited diode, which relates the anode 

current of the diode to the anode potential as well as anode-to-cathode distance of the 

diode. 

Readers are encouraged to go through Chapter 3 

of the book for more topics and more worked-out 

examples and review questions. 


