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Recapitulation of basic concepts of static electric fields or
electrostatics
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Coulomb’s law

Gauss’s law

Electric potential

Poisson’s and Laplace’s equations

Backgrownd

Vector calculus expressions developed in Chapter 2



Cowbornb s baw

]:'" — &22 Eir [Newton or N]
4 r

q, . Point charge at A [Coulomb or C]

q,: Point charge at B [Coulomb or C]

& . Permittivity of a medium [C%/N-m?2or F/m] A: X4, V1, Z4

(That the unit of permittivity is F/m will become clear from the
expression for the capacitance of a parallel-plate capacitor to
be derived later, the unit of capacitance being Farad or F).

B: X5, Vs, 2,

Y
Il
~ | Y

rF=(x,—x)a,+(y, _)ﬁ)ay +(z, —2,)a, [metre or m]

]1/2

r:[(x2—x1)2+(y2—y1)2+(22—21)2 [metre or m]
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The rationalization factor 4,7 introduced in Coulomb force expression
removes the appearance of this factor from many extensively used
expressions derived from Coulomb force expression.

(i Mwa@ ov diclecHric conAabd

€ + Permittivity of a free-space medium
g, =1/(36m)x107 =8.854x10™""  c2/N-m2 or E/m

Coulomb force is maximum in a free-space medium.



Use Cowlomb s low %o find cbetroific force

The problem is to find the force on a point charge ¢ placed at a corner A (0,0)
of a square on a plane due to three identical point charges each placed

at the remaining three corners B (4,0) , C (a,a) and D (0,a) of the
square, respectively, located in rectangular system of coordinates, one of

the corners, namely, A being at the origin of the coordinates

Y

L.x C

0| IR
Aq q >

0,0) .0) X
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F, = Force on the point charge at A due to -y

the point charges at B, C and D D C (a,2)
(0,2)[ 4 q
Fy =Fyy +Fep +Ep,
AL qB »V—X
(O)O) (3,0)
oo @ - . _(0-@)a,+(0-0a, —aa, ___
M dm ) B BA Tl -
7 ((q) (a,+a,) . _(0-a)a, +(0-aa, -a@ +a)_-(a+d,)
A 47, (N2a)* 2 ACA ‘x/Ea J2
(9)@) Gy, = Q04+ 07a)a, _—ad,
Fo—__\9D4Y - DA oA - ,

e 47230(3)2 g




s @@ .5 __ (@@ @+tad) = (9@
i 4rz, (a)’ @ For = 4r,(N2a)? 2 > Foa 4z, (a)’ “

2
. _ . q 1 L
Fo, +Fo + P, =— 1+ a.+a
BA CA DA 4 0a2 ( (2 /2))( X y)

Unit vector directed

2 — — from Cto A
L. L o g 1 -, +a,)
F(=F, +F., +F, )= (V2 +) ]
A BA CA DA 4 . a2 2 \/5
2 | : (3.10) |
FA :{4 q : (\/5+_):| [C—Z»CA] (magnitude)
TE,a 2

7 Unit vector directed

Magnitude from C to A

Qy

CA

(unit vector)



Two small identical metallic charged balls, each of charge g and mass m =1 gm,
hung by a long thread of length / = 1 m from a common point (hook), get separated
from each other by a distance d = 2 cm due to electrostatic repulsion and is set to
an equilibrium on the vertical plane. Find the value of the charge q.

At equilibrium, the tension T in the string |
balances a component of the Coulomb
force and a component of the
gravitational force put together as
follows:

TcosO Feosh

d > “ sinf+mg cosd

T =Fsmn@+mgcosb.

Also, at equilibrium, a component of
the gravitation force will balance a

From geometr
component of the Coulomb force to g y

staify the following relation: l
Fcos@=mgsind tan @ = d/2
b Jd 12y + 1
tan@ = 9

dr,d’mg



2

q tan 0 — d/?2

2
Equating the right hand sides

q’ B d/?2
dre,d’mg e /
modmg | d/2)+ T~ q_[2%0d3mg ]1 |

1/2 / \/6172/44-12
3

tan@ =

[

Remembering g, =8.854x 1072 F/m

and puttingm=1gm,/=1mand d =2 cm, you can calculate each charge q as

q=2.088x10" ¢ =2,088 nC.
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The force on a point charge g, due to the another point charge q,, given by Coulomb’s
law, can be interpreted as the electric field caused by the point charge q;.

F= MZ&; (Coulomb’s law)
4 r
}?«’:%E
F=_% G - Elgc:ric;] field due to the
4 r point charge g,

In general, the electric field due to
point charge q is then given by

q —
a}"

E= :
4 r

In general, the electric field due to

the point charge q is then given by

—

}_?::qE
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An electron moves along x with a velocity 2 cm/s in a region of uniform electric
field of 5 kV/cm along z. What is the force on the electron?

Arnowenr:

Electron carries a negative charge and it may
be regarded as a point charge q:

qg=—d=-1.6x10"C

Electric field magnitude is given as 5 kV/cm
along z:

E=5kV/cm=5x10’x10*>=5x10° V/m
Ez‘e‘EﬁZ

Force on point charge g due to electric field is
given by

F=qE=-dE=-dEa, =—5x10°x1.6x10""a, =—8x10"*d, N



Clectic M duweo a (on? unn{om WM& distribeition

Charge is uniformly sprayed over a long line along z axis

Medium is a free-space medium

The length of the line is very large compared

P is the point where the electric field is sought.

OP = d is the perpendicular distance of P from A
the long line charge distribution.

O is the foot of perpendicular drawn from P to
the long line charge distribution. 0O

A and B are the two points symmetrically

located with respect to O on each of which

equal amounts of line charge elements are

considered (OA = OB). B

to the distance of the point

p,dz
£
N
N\
\\ -
S dgp
OP=d —
0.7 0> a,
// C_i
e AP
///
Py dz

p,dz = Charge element each on A and B to be regarded
as point charges

P; = Charge per unit length or line charge density
of the line charge distribution

12



- pdz
dE .. = a
4w (AP

(Element of electric field at P z=dtanf
due to charge element at A
g ) (APY =(BP)’ =d’sec® 0

/

7 . ple L_i
" 4z (BP):

(Element of electric field at P
due to charge element at B)

a,p, = Unit vector directed from A to P

dgp = Unit vector directed from B to P
AP =BP =dsect

Pz
4r,d” sec’ O

dE ., =dEg, =

I\ﬁdz
N\
\
\\ -
N dpp
OP=d —>
0.7 eban
/, ~
,” Ayp
//
7
Py dz
z=dtan@

l

dz=dsec’0d0o

13



Find out the components of element of electric field, due to a charge

element on the line charge distribution, in directions parallel and

perpendicular to the line.

Parallel components of element of
electric field at P due to the charge
elements at Aand B— equal and in
opposite directions —cancel out.

Normal components of element of electric field at
P due to the charge elgments at A and B will add
up in the direction of a, .

p,dz
(dE,,), =dE,,cosf = cosé
AP/ L AP 472('5‘0(AP)2
pdz
(dEg,), =dE,, cosf = cosé
BP/ L BP 472}90 (AP)Z

(dEAP)J_ - (dEBP )J_

Elements of electric field component will
add up in the direction of a,, .

14



Elements of electric field component will z=dtané
add up in the direction of a,
P / dz=dsec’0dO
2 12 2
ple p,d- (AP)" =d"sec” 0
(dE,;), = cosf = 5 cosf
7, (AP)? 47229 d’sec’ 0
dsec’ 0d0O
(dE,,), = P : cosd =L cosaid p,dz
4r,d” sec’ O e ,d N
N
\\\ _
— N a
For the length of charge distribution very large OA =7 N .
compared to the distance d of the point P, you can oL_OP=d 9/ O G
integrate the above expression between the limits z=0 O o
and o and take twice its value to find the magnitude of ol ap
the electric field in the direction of ¢, . The limits z=0 //’
corresponds to 9 =( and z = oo corresponds to 9= /2 B |/7)le




dsec’ 0d6
(dE,,), = P cosd=—L1cosaid
4r,d” sec’ O e ,d |z
AP
For the length of charge distribution very large OA =7 \\\ Gp
compared to the distance d of the point P, you can OP=d S — E
integrate the above expression between the limits z=0 Y 0. 9%
and o and take twice its value to find the magnitude of ol -
the electric field in the direction of 4, . The limits z=0 rad Gap
corresponds to 9 =( and z = o correspondsto 9= /2 B |’/P%dz
/2 /2
E=2x I Pl costdd=2x—L Icos@d@
4 d dred <
E=-—" _[singf"? =2 (sinz/2—sin0)=—— (1~ 0=
27 ,d 27 ,d 27229 27 ,d
E = 'O—lgin (Electric field near a long line charge distribution)
27 ,d

Alternatively, the above expression can be very easily derived by Gauss’s law yet to be
introduced.

16



Clectic M duweo a ww/om WWM& distoibeiTion
wilh a circwlar km%ﬂama‘ww&woﬁ&fmfmm%

Charge is uniformly sprayed over XY plane within a circular L
boundary P...
a = Radius of the circular boundary of charge distribution (5>
P, = Uniform surface charge density g 1
r = Radius of an annular charge ring dy w@ >

z = Perpendicular distance of P(0,0, z)where
to find the electric field

17



Approach:

Step 1: Find the sub-element of
electric field at the point P due the
sub-element of charge on an
annular ring sub-element of
infinitesimal radial thickness.

— dE’

Step 2: Find the element of electric
field at the point P due to the
charge on the entire annular
charge ring by integrating the sub-
element of electric field obtained in

tep 1. -
Step = dE

Step 3: Integrate the element of
electric field obtained in Step 2 to
find the electric field at P due to the
entire circular charge distribution.
= F

w
dr, 9

18



Step1: — dE'

0,0,z
P, = Surface charge density ) >
rd@dr = Area of the ring sub-element at S R I
p.¥d Bdr = Charge on the ring sub-element at S = .,
dr, 0
a S a

q = p,rdodr
dE’=Mﬁsp Fo_9 - —
472;9052 4mer? " «— r=s5=SP
\ ) )
a, =dgp

19



prdddr .

: . SP SO+OP
dE' = i _

_—ra, +za,

47,5 “r=SpT Sp

~ | prd@dr | —ra, +za, pridodr\_. [ przd&dr ).
dE' = > = ———la, +| —=—— |a.
47 s S 47z s 4rz s’

Step 2: = dE

2
dE = [dE' = [ (_psr d‘gfr]ar (p er@eraz

47z s 47z s

. ( pridr p.rzdr
dE =| 22N [ aa, +| 2= jdea
47 S drz s’

0

S

20



Id@ from one sub-element of charge to

a : :
another on the annular charge ring since

their directions change even though their

magnitudes remain the same as unity. On

the contrary a_ does not change so.

2 2
dE:(pS” d’;jfdéﬁﬁ( p.rzdr

a, changes with the position of S, that is,
A s )% drz s’ J

0

Therefore,
2 2r N
dE =| Bs" dr J‘d(% + p,rzdr Id@ a_ can be taken outside the integration
47zgos3 " 4;2305 while a cannot be so done.
\ The magnitudes of a, are z
the same as unity but their 1
directions are opposite at 0ot F
two diametrically opposite &
. charge sub-elements. That ay 4
dE = p,rzdr G J‘dg makes the first integral R '
47zgos3 z ) vanish.
d d < = Y
= rzdr |. p
dE = 'OS—3aZ><(27z—O)= a - s<\a
47 s
rzdr |.. rzdr |_
Ps T la. x27 = Ls T |a. X
47 s 28,8

21



JE = Ps’”Zd;” a =| 2% (M—:jﬁz
28,8 26, \Us
\ S =zsecy

v r=ztany

_ dr = zsec’ wdy
dEz[zp—Sjsint//dl//ﬁz

€0
Step3: = E
R R tan'a/z
E=[dE=| L= Isim//dl//az
28, ) %
E=| Lo [—cosy/]gml”‘/zﬁz L cos(tan1 ¢
28, 2¢,

(o,o,z‘xu
N4
a;
R 1 2
w
dl’ 9 )
a S a

The upper limit of integration corresponds
to the annular charge ring at the periphery
of circular charge distribution at » =g .

The lower limit of integration corresponds

to the annular charge ring at the centre
of circular charge distribution at » =0.

22



E= [—cosy ™ aizg = | Ps cos(tan1 g)—COSO a.
280 2¢, z

E=4 2 = _la-| & i-———a
250 a’ +z° 250 a’+z°

The electric field near a large area of \
charge distribution—large sheet of

z<a
charge— becomes

Fob

a, (z<<a)
€o
Interpreting a, =a,

Electric field near a large sheet of charge becomes

E=F5
2¢,

Alternatively, the above expression can be very easily derived by Gauss’s law yet to be

introduced.

(o,o,z‘X\"
7

a
R 12
w
dr, 9
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Gonss s bowo

Life becomes simple while finding electric field in problems, if you
can do away with the integrations involved in the application of
Coulomb’s law to such problems!

For problems that enjoy geometrical symmetry—rectangular,
cylindrical or spherical —one can apply Gauss’s law to make the
solution to such problem very simple. You can avoid carrying out
complex integrations to find electric field which would be otherwise
necessary if you would apply Coulomb’s law to such problems.

LA wo oo Gonss s bow amd prove X Haiing from
Conlornb o bow.

W;lm can kdﬂdmfmomeMmde
Mc&m&nﬂ:

24



Electric displacement D is related to electric field E .
D=¢E

Element of flux of electric displacement = d¢@,

d¢,, = Element of flux of electric displacement x

A4S = Element of area D

a, = Unit vector normal to the element of area
d¢, =D-dS =D-a dS
Flux of electric displacement = ¢D
¢, = [d@, =[D-dS =[ D-d,ds
S S S
Flux of electric displacement through a closed volume = ¢,

op = ifD'dS = §D‘Zlnd5 <— |nvolves closed surface integral
S S

25



Flux of electric displacement through a closed volume o

Pp = {f)-d* = ifﬁ-c”zndS <— Involves closed surface integral
S S

Gauss's law can be statedin terns of ¢,

Gauss’s law states that the outward flux of electric displacement D through the
surface of a volume enclosing a charge 0 —estimated by a closed surface integral
of D over the area of the volume enclosure—is equal to the chargeQ

enclosed,

o =§5'd§ = fﬁ'ﬁndS =0 _  Outward flux of electric
S S

displacement=¢,

Gauss’s law

Ny

D=¢E (¢ = medium permittivity)

N ——

E-dS = ffE'Z’ndS _ 9 <« Outward flux of electric
S & displacement = ¢y

Q = Charge enclosed

26



o Mu&ffwcw W'wla«/

o Lt ws apply The law To prollemsThot
uv;,oy, ’wm&’ml 47,mmﬂ'¢7, —w&fom?wlwy

o Proof of Gamss s lows

Take a point charge ¢ inside a volume

D=¢k=¢—1-a=-—"_3

4’ " 4xr?

=§{D-dS ={D-a,ds
S S

enclosure
q

a -a,=cos0

a, is directed from O to P,

Solid angle
element dQ

27



dS cosd _ 4O

N _— 2 (Solid angle element
I = §D ds = §D -a,dS : subtended by area
§ § / element at P)
~ dS cosf
¢D:fD A =:f qzcosedSz 1 § C(z)s
< s4rr Ty T -
Zirl
- Area element
by ={D-a,ds =-Lfdo =(-Lyar)=q as
< A7 4r i anal
olid angle
l—j . c_indS s (Gauss’s |aw) element dQ

N ——

What will be the outward flux of
electric displacement if a number of
point charges, instead of a single Charge ¢ inside a volume enclosure
point charge q, are present within the

volume enclosure?

28



Outward flux ¢, of electric displacement if a number of point

charges q4, g5, G5, -- ... q,, instead of a single point charge q, are q g
present within the volume enclosure / o, = _ffdQ = (4—)(47[) =q
T
§D-a,ds _ql fdgz + L2 §dQ + 4 §dg o fdQ,
A<
§dQl—fsz —fdQ3 —........;fdQn an dQ,,dQ,dQ,,.....dQ areelements
s s s s of solid angle subtended by point

chargesq, +q, +q; +....... q, respectivdy.

Il
=
+
2
)
+
=R
+
&
[l
Q
=
I
N ——
)
N ——

T B¢

fE'a dS = _Q (Gauss’s law)
£
S

You have thus proved Gauss’s law)!

29



W@&wfmof vobume charge My,

O=q,+q,+q; +........ q,

p 1s regarded constantover

the volumeelement d

{D-a,ds =[pdr —
S T

(Gauss’s law in terms of volume charge density)

[

g

§E-d,ds
S

30
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Approach:

Step 1: Appreciate that the
direction of electric field at a
point P near the sheet of charge
is in the direction perpendicular
to the the plane of charge in the
direction of @, .

In other words the electric field is
along Z axis: a, =a,, .

Step 2: Find the magnitude
of electric field E at P using
Gauss’s law.

Srep E=Fa,
3: :

Gaussian
rectangular
parallelopiped

Planar sheet of
charge

AN ____,
a,=—a, <7 X | Z
D = —d

P i ]

(b)

Cross section of planar charge sprayed over a

very large area on XY plane. X is perpendicular to

the plane of the paper directed away from the

reader. Gaussian volume (rectangular 31
parallelepiped is also shown.



(iv)

Consider on the planar sheet of charge,
supposedly positive, a pair of identical charge
elements each treated as a point charge
symmetrically placed with respect to the point
P.

Appreciate the following with the help of
Coulomb’s law,

The magnitudes of electric field at P due to the
pair of charge elements are equal.

The direction of electric field at P due to a
charge element of the pair of charge elements
is from the charge element to the point.

The components of electric field due to the
charge elements of the pair parallel to the
plane of the sheet of charge are equal in
magnitude and opposite in direction and they
cancel out.

The components of electric field due to the
charge elements of the pair perpendicular to
the plane of the sheet of charge add up in the
perpendicular direction.

E=Fad, (Step1)

Gaussian
rectangular
parallelopiped

Planar sheet of
charge

Ap—ee N oo,
a,=—a, <1 X@T1 Z
D =—A

e R )

(b)

Cross section of a planar sheet of
charge and Gaussian volume
(rectangular parallelepiped)

32



The areas of the faces AD (left) and BC (right) are equal and each much smaller
than the area of the large sheet of charge considered. Therefore, the magnitude of
electric field can be regarded as constant over each of these faces.

The faces AD (left) and BC (right)

are equidistant from the sheet of * Y
charge. Following step 1 Gaussian § Planar sheet of
rectangular % charge
parallelopiped %
I
8
Y, VR | I ——
i 8
. - . T — 7 - W
Electric field = Ea, (right face BC) a,=—a < X1 z
D C a =-a
n V4

Electric field =—FEa, (left face AD)

A A

(b)

Cross section of a planar sheet of
charge and Gaussian volume
(rectangular parallelepiped)

33



Left face AD and right face BC of closed
rectangular parallelepiped Gaussian
volume are equidistant from the planar
charge distribution. Right face BC
passes through P.

a, =unit vecta outwardlynormal to right face BC

—a, =unit vector outwardly normal to left face AD

p, 1s thesurfacechargedensity of

the planar sheet of charge.

§E.5nd5 — Y Gauss’s law
& ‘
’ ™ 0=p5

S =area of AD =areaof BC

v

IEc_in -a,dS+ I(—E&n).(_andg) _ P,

S (right face) S (leftface) 0

= area of sheet of chargeenclosed

Gaussian
rectangular
parallelopiped

Planar sheet of

K

Apeee o
dy=—a;=1_ _I§___} I
D C a,=-a,

e e ]

(b)

Cross section of a planar sheet of
charge and Gaussian volume
(rectangular parallelepiped) passing
through P

Upper and lower faces of Gaussian parallelepiped
do not contribute to the surface integral since the
electric field is parallel to these faces being
perpendicular to the sheet of charge.

34



The areas of the faces AD (left) and BC (right)
are equal and each much smaller than the
area of the large sheet of charge considered.
Therefore, the electric field can be regarded
as constant over each of these faces and
taken outside the integral.

[Ead,-ads+ [(-Ed,)-(-a,dS)=

S (right face) S (leftface)

_ _PS
[ Eds+ [ (EdS)=2E[dS)= .

Py
E=—-"(Step2)

(p, 1s the surface charge density)

E=2LG, (Step3)
2¢,

(Electric field near a large planar
sheet of charge)

pS

*Y

Gaussian
rectangular
parallelopiped

Planar sheet of
charge

-—— -y

‘ B R i ]

b —— —

B ]

(b)

Cross section of a planar sheet of
charge and Gaussian volume
(rectangular parallelepiped) passing
through P

35



S (right face)

M%MMMM&»/@OMW& {a«g&fw
conduiAor of wwnfom««{aw chorge My.

Follow the same approach and the A Y
symbols as those used to find the N Pl duct
. . % anar conductor
electric field near a large planar N .
¥ Gaussian rectangular
sheet of charge. § parallelopiped
B} N _v(
ffE a,d =— (Gauss’s law) R [ ,
s L \ '
l ¥~ (& =¢, ="free = spacepermittivi ty) N————— -
\
N
N
Ei -adS+ [(-Ed)-(-idS)=2> \
n n n n - g
S(leftface) &y \
N

A

[Ea, a,ds ==

S (right face)

y

/

Left face of parallelepiped passes
through the conductor where the
electric field E is absent and the

integrand of the second term is null.

Therefore, the second term is null,

S

&y

Gaussian rectangular parallelepiped
enclosure with its left face passing
through the conductor and its right face
through the point where to find the electric
field

36



[Ea,-a,ds = )

S (right face) 80

jEdS:Ede:ES:’LS

&y
E=Fs ( P, 1s the surface charge density)
€o

E=Ei =2a
80

n

(Electric field near a large charged planar conductor)

Planar conductor

Gaussian rectangular

—v/ parallelopiped

] —-

A =

Gaussian rectangular parallelepiped
enclosure with its left face passing
through the conductor and its right face
through the point where to find the electric
field

37



Wéonof W;la‘w% a/n«w%mMunj_oyw
ditibeiAion "f wwufom bne charge My_

Follow the same approach as that
used to find the electric field near a
large planar sheet of charge.

Gaussian
Cylinder
f = (Gauss’s law) N N
S E’ =Fa =Fa 7T A :‘:: __________ ¥
n r 1 ' _
/ c_i _ c_i _______ V E\. T r
N\ n r D -
{E-d,ds ={Eq,-d,dS={Eds
S S S
ff EdS = Q0 —
5 € Q = p,l =charge enclosed
; (o, =charge per unit length or line charge density)
§ Eds =
g

38



Gaussian
«— {dS 277l Cylinder
N
A Lo
"""" S S
e ! -
Pl «— (&=¢,="free =spacepermittivity) ... Y. i

D ..........

«— §EdS=p—ll
< &

E=FEa,=Ea,

|

E—_Pr_; (p, =charge per unit length or line charge density)
2y

(Electric field near a long line charge distribution)

39



W«low of W;« baw Ao arwl[oth\}oyw

fma‘% MWM Adwe 7o aroMM&.

fE ad =— (Gauss’s law)
’ \ E = Eﬁn = Ec_ir Area element
ds -
o -7 ‘
@ =4 Gaussian
{E . 5ndS = {Ec_ir -c_irdS = ifEdS Sphere
S S S

E=—4 ~d, (Electric field due to a point charge)




Work required to be done by
spending energy to lift a
particle to a height from the
ground (surface of the earth)
against the gravitational
force is stored in the form

of gravitational potential
energy.

The ground surface is taken
to be at zero reference
gravitational potential.

Electuic periat
m&t;y

Work required to be done by
spending energy to move a
charged particle—a point

charge Q—from infinity
against the force due to an
electric field to a point is
stored in the form of electric
potential energy W .

Taking the zero reference
potential taken as the
potential at infinity, the
potential V at the point is
given by

V:g(J/C or V)

The potential at a point is thus numerically equal to the
potential energy of a unit point charge placed at the point.
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V' =Potential at thepoint P due to point chargeq at O at a distancer (OP =r)
E =Electric field at P due to point chargeg at O at a distancer (OP =r)

__ 49
4z, r

et

~d, (a,is theunit vector directed from O to P)

F =Forceon thepoint chargeQ supposedly positive at P

F=QE=0—1_G =Fa,
V<ZE07'
E=—9 g
A, r
o qu
dre,r

dW = Element of work required tobe done tomove Q fromP’ to P throughan element of distance dr
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W =Fdr=—21_gr  + =1
4re,r 4z, r

Work W required to be done tomove the point charge O frominfinity up to thepoint P is

0

W:I Qg dr = Oq Tizdr:ﬂ[—lr: Qg 1_ Oq
Arg, - r

5 =
4, r e, rl, 4dm,r 4dm,r

7

Oq
W 4m,r q
0

A .~ (Potentialat a distance r from the point charge g)
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A and B are nearby points separated by element of distance AB=dr
The potential is V at every point on the equipotential V.
The potential is V+dV at every point on the equipotential V+dV.

The same electric field exists at A and B and the same force is
experienced by a point charge at A and B.

F= QE (Force on a point charge at A or B)

V,=V (potentialat A) %
V, =V +dV (potential at B)

oV, =0V — X
OV, = O +dV) 9

AW =QV,—QV, =0V —O(V +dV)=-0dV

Work s required to be done to move thechargeQ fromB to A

if V, >V, ordV is negative that makes dW positive.
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AW =—-QdV AW =F -dR
N &

—QdV =F-dR « F=QF

y
—QdV =QFE-dR
av=-E-df « av=""an
on

oV SR I "
a—dn=—E-dR +« dn=dRcosf=ad, - dR AN =dn

n
VY G R =—E-dR

on
a_Van —_F

on
E:—G—Van — VV:a—VEin

on on

FEe_vVy (Definition of gradient of a scalar here V)

Electric field is the negative gradient of potential.



5%%0% 10 notmalo an Wud'ml

v
In the limit B—A, In the limit B—A,
dV =—E-dR=0 dR becomes tangentil to
E-dR=0 the equipotential /" at A
4

~

E becomesnormaltodR and henceto theequipotential J at A and thus

E=Ea

n

It willbe of interest © apply theexpressionE =—VV

to find thecapacinceof capacitors
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6Mmofamm capacilor (m% expression
fo@ dectric M it Terms offmo ;makm?f of Mmﬂ'm‘)

Let us consider large dimensions of plates
compared to the distance between the plates.

The geometry of the problem enjoys
rectangular symmetry.

E=-VV = LW +8—Va aVaj

Ox oy 7 oz

/ 4

Wecan taked/o0z #0;0/0x=0/ox=0

E=-=-a,

. . Source of
5 and the problem becomesone - dimensional.
z

Potential
(electric field inside thecapacitor) 4

E= 2 (magnitudeof electric field inside the capacitor)
Z

v~
E=—— V' dependsonly on z.
dz
Integrating

Potential of the plate Aatz=0is V,
v, 2=0 / |
[av =-[Ed:
Vg z=d

Potential of the plate Batz=d is Vg

Distance between plates = d



V, z=0
[av =-[Ed:
Vg z=d
Let us evaluate theleft and right hand sides.

[av =V} =v,-7,

We obtained earlier the electric field near a chargedconducoras

(Lefthand side) E=£g .

&y
=0 Interpretng the medium to be a dielctric of permittivity &
z=d & \ E‘ — &&’

n

5

ZZO Z:0 Z:O
— [Edz=—[ Prdz=- [dz=—("*)(0-d)=L>d (Right hand side)
z=d z=d & & z=d & &

Putting theleft and right hand sides togetherin the expression

n-n:%d
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Putting theleft and right hand sides together

in the expression weobtained

Ps
VA_VB:gd \ Q

Ps = p
QO =Chargeon eachplate
VA—VBzﬁdz%d A= Area of eachplate
g g

|

Capacitance C of the
capacitor becomes

The unit of capacitance is Farad or F and

O ¢4 — accordingly the unit of permittivity ¢is F/m.

Vv, d

(Expression for the capacitance of a
parallel-plate capacitor)
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What is the area of the plates required for constructing a parallel-plate
capacitor of capacitance 100 pF using two metal plates using a mica
spacer of relative permittivity 5.4 that separates the plates by a
distance of 10-2 cm.

Anowenr:

c_¢4
d
yoLd_cd
& §)E,

~_ d=10"cm=10"m

e =54 (given)
C=100pF=100x10""F

~Cd _Cd 100x107"*x107*
& ge&, 8.854x107°x5.4

r

A =2.1x10"* m? =2.1cnm?’.
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gafmfmwofa coarial calle (uw% mefo@
The magnitude of radial electric field in the region between the
inner and outer conductors of a coaxial cable can be found using

Gauss’s law as in the problem of finding the electric field due to a
long line charge distribution already dealt with. Thus we get

E=PL_ (a<r<bh)
27 ¥
a =Rads of theinner conductorof thecoaxial cable

b =Radius of theouter conductorof the coaxial cable

The geometry of the problem enjoys cylindrical symmetry. The length of the
cable is taken large compared to the radial dimensions of the cable. The
problem becomes one-dimensional. Thus we have here

o/or#0;,0/00=0/0z=0

/ a<r<b

E:—VV:—(ﬁ—Var +15—V59+8—Vc‘izj
or r 06 Oz

E:-a—Va,
or

o 9
or
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oV

E=-Y «—— [p=_F_ (a<r<b)
or 27 v
l V" dependsonly on r.
14 ___ P v ___ P
dr 27 v or 27 v
l Integrating between the limits V' =V, atr =a andV =0atr=>»
V, = Potential difference between the inner and outer conductors

V=V, a

jdV:—&jldr
V=0 r

27y

e L

V,=—PL (ha-Inb)= 2”L (hb-na)=LLm?

Pr

2,

b

2, TE, 2, a

|

2,

n?
a

Vo
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Capacitance per unit length of thecableis obtained by dividing
the chargeper unit length p, of theconductorby

the potential differencel, between tle conductors

27me

pL: bO VO
lni
a

C(z &J = 2—7220 (Capacitanceper unit length)
0 n_
a
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Cletvic ficld of a dipole (wsing The capression for clectiic

Two equal and opposite point charges
separated by a distance constitutes a dipole.

I = AB = Length of the dipole being the
distance between the point charges

q = Charge of the point charge at A

P(r,0,0)

—q = Charge at the point charge at B

r = Distance of the point P (r,8,¢}—where to
find the electric field—from the middle O of the
dipole.

Let us consider a shot dipole for which /<<r.

The problem enjoys azimuhal symmetry: 0/0¢=0
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V =
47 v

|

ST IR AT
4, \AP BP) 4m=,\CP BP
_ 4 1 1
_47280(OP—OC_BD+DP]

12

DP =~ OP =r (r >>[ for a shortdipole) X
__ 4 1 _ 1
4re, \ r—(1/2)cos@ (I/2)cosO+r ]

([/2)cos@+r—[r—(l/2)cosd]
[r—(l/2)cosO][(/2)cosO+r]

_q [cosO
r*—(I*/4)cos’ 0

_glcos@ pcosd

A’ Amegr”

%

(r >>1[ for a shortdipole)

p = ql (dipole moment)

(Potential at a distance » from the point charge g)

P(r,0,0)

OC=0Aco0s0 = écos@
BD = lcos@
2

DP=OP=r



- pcosd

4

p = ql (dipole moment)

ExpressingVV in spherical- polar coordinates

—

E:_W:_(ata Lo

G +——a,
or r 06

. (ala 101&)
E=——a +———a,
or r 00

o
Il

—2pcosd . 1
| ———=4q, +— 3
A7 v r 4w r

N\

1 oV .
+ - Cl¢
rsin@ o¢

\ The problem enjoys

— psiné@ _

- pcosf
4re v

AV —2pcost

or 4

oV _—psin@

50 4

azimuhal symmetry: 0/0¢=0
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Bl —2pco3s€ i +l—psm29 i,
47 v r 4rer

|

p(2cosba, +sinba,)

E= -
4re v

(expression for electric field due to a
shot dipole at a distance rand at an

angle @ from the axis of the dipole in
terms of the dipole moment p)

Putting =0
E=—L G
27 ¥

(expression for electric field due to a
shot dipole at a distance r on the axis
of the dipole (6= 0) in terms of the
dipole moment p)

P(r,0,0)
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[ ] ’ ’ L]
Poisson o and iaflaw vy WM
Let us take an infinitesimal volume element Az
over which we can take the value of volume -— ffﬁﬂndS = Ipdf (Gauss’s law)
charge density p and that of electric S .
displacement D to be fairly constant. If we

apply Gauss’s law to this volume element, we

obtain the following approximate relation:

The approximation sign of equality is

given since over the volume element Az,

the value of volume charge density p and

l that of electric displacement D have been
regarded as constant.

AT =P \ The relation is made exact and the

equality sign is given by taking Az — 0
l corresponding to the volume element
shrinking to a point.

A

ffﬁ-ﬁndS =pAt
N

§D-a,ds e .
Lt < <— The left hand side is the definition of
AT 0 Ar =P the divergence of a vector here electric
l displacement.
V-E:p «— D=¢E For p=0,

~ ~
E =P ' y - y ~ V-D=0
V.E_8—> %WW&M«, ‘W&Ww >

TAV.E=0
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Laplasiam form of Prisson, s and Laplace s
Walow

With the help of the relation between the electric field in terms of the
gradient of electric potential we can find the expression for Poisson’s
equation in terms of potential.

Putting the volume charge density equal to zero in Poisson’s
equation so found we get Laplace’s equation in electric potential.

We can solve these expressions for potential and subsequently find
the electric field from potential with the help of the relation between
the electric field in terms of the gradient of potential.

E=-VV

v.E=L (Poisson’s equation in terms of electric field)
g

V-(VV)=VV
vy VD)
&

VY = _P (Poisson’s equation in terms of electric potential)
£

N\

V?V =0 (Laplace’s equation in terms of electric potential)

p=0
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ﬂMmM tn The »w?iow bAween conduwAors ot

differend poteniiods from Mhe sobefion of Loploce s

equalion in Laplacian form

Tm@a%f@o% ofarmm cafao%@. FindThe
eapression for cbectiic ficld inThe vegion befween plofes.

V?V =0 (Laplace’s equation in terms of electric potential)

\ 0/0z#0;0/0x=0/0x=0

ViV =0V /oz*
0’V /0z> =0 «— ¥ dependsonly on .

Vv _,

de \

d_V i P Integration

dz A is integration constant
v

[av=[adz

V=Az+B B is integration constant

Source of
Potential
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V=V,6atz=0

V=Az+B 4

B=V,

V=V,atz=d
N s
Vy=Ad+B=Ad+V,

A:_VA_VB
d
VZ—VA_VBZ+VA
d \
F=-Ys
I 7 7 e dz ~
E=-—4—2%g
d z

(Expression for the electric field in terms of the
potential difference V, — V5 and the distance d
between the plates)

61



Mw A a "'W‘%MMM!#W > ww%a.
TFondThe cxpression for cletinc ficld in The region
Mmee&. Z

The problem enjoys cylindrical symmetry, \
allowing us to treat it in cylindrical coordinates.

V, = Potential difference between plates &

6, = Wedge angle

V¥ =0 (Laplace’s equation in terms of electric potential)

™ 0/00+0.0/6r=0/0z=0
V' depends only on 6.
1oV 1dV
VzV:— = — :O
2 00 r* do?
2
d Z:O
do
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\
do’ Integration
av _ C, C; is integration constant
do
[ar=c[ade
V=C6+C, C, is integration constant
LT
V=V,at =0
Vo =0,
V=0at =6
v=co+y, T8 TT%

| \
0=C6,+V,

__n
q=—5-////* g %9+%
0, l

0
V=ra--)

0
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0
V=11

0

0/00#0;0/0r=0/0z=0

-

E:—VV:—la—VEie :_lﬂgge
r 00 rdo
do o,
E:lEag
r 0,

(Expression for electric field at a point located
between a pair of large conducting plates
forming a wedge separated by an infinitesimal
insulating gap, in terms of the potential
difference V, between the plates and the wedge
angle 6,)
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\ Basic concepts of static electric field or electrostatics have been recapitulated in this
chapter.

\ Rationalised MKS system has been introduced while writing the expression for the
electrostatic force between two point charges called Coulomb’s law. The rationalisation
factor 4n has been introduced in Coulomb’s force expression thereby removing the
appearance of the factor 4n from many extensively used expressions derived from
Coulomb force expression, for instance, Gauss’s law.

\ Coulomb’s law has been used to find

¢ electrostatic force on a point charge due to the distribution of other point
charges; and

¢ electric field due to a point charge as well as the electric field due to a
distribution of point charges.

\ Finding the electric field by Coulomb’s law has been illustrated in examples of charge
distribution such as line and surface charge distributions.
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\ Gauss’s law greatly simplifies the finding of electric field in problems that enjoy
rectangular, cylindrical or spherical symmetry, which otherwise would become quite
involved if Coulomb’s law were used instead.

\ Concept of electric potential has been introduced.

\ Expression for the electric field in terms of the gradient of electric potential has been
derived and illustrated in examples, for instance, in the problem of finding electric field
due to a short dipole as well as in the problem of finding the capacitance of a parallel-
plate capacitor and the capacitance of a coaxial cable.

\ Poisson’s and Laplace’s equations have been derived from first principles and their
use illustrated in the problems of finding the electric field in the region between a pair
of conductors at different electric potentials by solving Laplace’s equation expressed
in terms of Laplacian of potential.

\ Poisson’s equation in terms of Laplacian of potential has been solved to deduce
Child-Langmuir’s law for a space-charge-limited diode, which relates the anode
current of the diode to the anode potential as well as anode-to-cathode distance of the
diode.

Keaders are moowmgwl% go ﬁ»w«;ﬂ Ww >
of% bootk /o»b mow%;n’a« and more worked-ovt
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