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Chapter 11

Summary
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The topics of the book have been chosen such that by reading them readers would grasp

most of the essence of engineering electromagnetics within a reasonable time without being

lost in lengthy exercises on each of these topics (Chapter 1).

• The following objectives of writing the book set at the outset in the introductory have been

fulfilled:

 The subject has been made easy to understand

 Attempt has been made to convey the overall essence of the subject to students

 The book has uncovered in a reasonable period of time the concepts of the subject

as are required to appreciate the relevant engineering application of the subject.

Electromagnetics is of relevance and importance to understanding

the concepts of electrical, electronics and communication

engineering.

Historical timeline of the development in the subject at the outset of

the book motivates readers to take part in the further development

of the subject.
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• The vector calculus expressions for the gradient of a scalar and the divergence and curl of

a vector have been derived from first principles in generalised curvilinear system of

coordinates (Chapter 2).

• The vector calculus expressions in generalised curvilinear system of coordinates are easy

to remember in the sense that if we can remember one of the terms of an expression, we

can write the remaining terms simply by permutation.

• The vector calculus expressions in generalised curvilinear system of coordinates have

been interpreted for the rectangular, cylindrical and spherical polar systems of coordinates to

deal with electromagnetic problems that enjoy rectangular, cylindrical and spherical

symmetry respectively.

•The expression for the Laplacian of a scalar or a vector quantity is obtained by combining

the gradient and the divergence expressions (Chapter 2).
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• Coulomb’ law can be used to find the force between static point charges and the static

electric field due to a point charge or a charge distribution (Chapter 3).

• Gauss’s law can be used to find the electric field in electrostatic problems that enjoy

geometrical symmetry.

• Elctrostatic field has been found as the negative of the gradient of potential and applied to

problems such as finding the electric field in a capacitor (Chapter 3).

• Poisson’s and Laplace’s equations have been deduced and read in the desired system of

coordinates and used to find the electric field and potential due to a line charge, a sheet of

charge and a charged conductor (Chapter 3).

• Poisson’s equation can be used to deduce Child-Langmuir’s law applied to charge-flow

problems, for instance, to find a relation between the anode voltage, the anode current, and

the distance between the cathode and the anode in a vacuum diode (Chapter 3).

• Magnetostatic quantities analogous to the corresponding electrostatic quantities can be

identified and used to develop Coulomb’s and Gauss’s laws as well as Poisson’s and

Laplace’s equations of magnetostatics on the line of electrostatics (Chapter 4).

• Gauss’s law of magnetostatics and Poisson’s equation of magnetostatics are the

manifestation of the absence of free magnetic charges (poles) or that of the continuity of

magnetic flux lines.
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• Biot-Savart’s law gives the magnetic field due to a steady current element, which may be

integrated to find the steady magnetic field due to a current distribution and thus takes the

same role as Coulomb’s law in electrostatics.

• The concept of magnetic vector potential helps in finding the magnetic field due to a steady

current.

• Ampere’s circuital law can be used to simplify the problem of finding magnetic field in steady

magnetic field problems that enjoy geometrical symmetry, the same as Gauss’s law in

electrostatic problems that enjoy geometrical symmetry (Chapter 4).

• The continuity equation at a point relating the divergence of the current density with the time

rate of the variation of volume charge density at the point can be derived from the

conservation of charge in a region of charge flow, the concept marking the beginning of the

concepts in time-varying fields (Chapter 5).

• The relaxation time of a medium measures how long a charge injected into a medium will

stay in the bulk of the medium.

• The expression for the relaxation time can be derived from the continuity equation.

• The relaxation time depends on the conductivity and the permittivity of the medium.

• The relaxation time of a conductor is very short while that of a dielectric is very long; this

explains why a conductor can be charged only at its surface and that a dielectric can be

charged throughout its volume.
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• Faraday’s law for time-varying magnetic fields expressed in both its integral and differential

forms helps appreciate how an electric field in electromagnetic induction is associated with

a time-varying magnetic field and thus how electric and magnetic fields are coupled in

time-varying phenomena.

• The concept of the displacement current can be developed with the help of the continuity

equation, Poisson’s equation and the differential form of Ampere’s circuital law.

• The concept of the displacement current helps understand why a capacitor filled with a

non-conducting medium allows time-varying current to pass through it (Chapter 5).

• The loss tangent is the tangent of the angle by which the displacement current density in a

lossy dielectric fails to differ in phase from /2 from the conduction current density

(Chapter 5).

• The loss tangent is also the tangent of the angle by which the time-varying current

through a capacitor filled with a lossy dielectric fails to differ in phase from /2 from the

voltage across the capacitor.

• The loss tangent of a lossy dielectric can be expressed in terms of the frequency of a

time-periodic electric field and the conductivity and permittivity of the dielectric.

• Maxwell’s equations derived in both integral and differential forms are extensively used in

electromagnetics.

• We can modify the electrostatic relation between the electric field and the gradient of

potential for time-varying fields with the help of one of Maxwell’s equations and the

concept of magnetic vector potential (Chapter 5).
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• Two of Maxwell’s equations have in them electric and magnetic fields coupled.

• Maxwell’s equations with electric and magnetic fields coupled can be combined, thereby

decoupling these fields to obtain the wave equation in electric field and the wave equation

in magnetic field (Chapter 6).

• A uniform plane wavefront is characterised by a plane perpendicular to the direction of

propagation over which the amplitude of the field representing the wave remains constant,

the wavefront being the locus of points having the same phase of the field of the wave.

• The wave equation in electric field and the wave equation in magnetic field each can be

solved for studying the characteristics of propagation of a uniform, plane electromagnetic

wave propagating through an unbounded free-space medium.

• The unbounded free-space medium supports transverse electromagnetic (TEM) wave.

• The directions of the electric field, magnetic field and propagation of wave are mutually

perpendicular to one another (Chapter 6).

• The intrinsic impedance and the wave phase velocity of the medium are each related to

the permeability and the permittivity of free-space (Chapter 6).

• The study of propagation of a uniform, plane electromagnetic wave through a semi-

infinite conducting medium making a planar interface with a free-space medium gives the

expression for the surface resistance and that of the surface impedance, both depending

on the wave frequency and the conductivity of the medium.
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• The planar-interface approximation can be made with respect to a round wire if the

conductivity of the material of the wire and/or the wave frequency is high, for which the

skin depth of the material is much smaller than the radius of the round wire.

• Under planar-interface approximation, the ratio of the ac-to-dc resistance of a round wire

is equal to the ratio of the wire radius to twice the skin depth of the material of the wire.

• Lower frequencies, say, ~10 kHz, is preferred to higher frequencies, say, ~10 GHz, in

view of comparatively lower attenuation of waves at such lower frequencies for sea-water

communication as revealed by studying the propagation through unbounded sea-water of

finite conductivity and permittivity.

• Study of wave propagation through a medium of charged particles gives the concepts of

sky-wave propagations through ionosphere as well as those of space-charge waves and

cyclotron waves on an electron beam (Chapter 6).

• General electromagnetic boundary conditions can be deduced at the interface between

two media in terms of a unit vector directed from one medium to another (Chapter 7).
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While deducing general electromagnetic boundary conditions at the interface between media,

two definitions have emerged as follows (Chapter 7):

• The surface charge density is the product of the volume charge density and the

infinitesimal thickness over which the charge is spread at the interface in the limit of the

infinitesimal thickness tending to zero.

• The current density is the product of the current density and the infinitesimal thickness at

the interface over which the current density is significant in the limit of the infinitesimal

thickness tending to zero.

General electromagnetic boundary conditions have been interpreted at the dielectric-dielectric

interface and at the conductor-dielectric interface based on the following findings:

 The surface charge density is nil at the dielectric surface for both time-independent and

time-dependent situations.

 A finite surface charge density develops at a conductor surface for both time-independent

and time-dependent situations.

 Electric field or electric displacement is absent in a good conductor for both time-

independent and time-dependent situations.
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 Finite magnetic field or magnetic flux density can be established inside a

dielectric independently of electric field for both time-independent and time-

dependent situations.

 Magnetic field and the magnetic flux density each become zero inside a

conductor for time- dependent situations.

 Finite magnetic field or magnetic flux density can be established

independently of an electric field in a conductor for time-independent

situations.

 Surface current density at a dielectric surface is nil for both time-independent

and time-dependent situations.

 Surface current density at a conductor surface is nil for time-independent

situations.

 Finite surface current density can be established at the surface of a good

conductor for time-dependent situations (Chapter 7).

• Using a relevant electromagnetic boundary condition, we can understand the

phenomenon of the formation of a standing wave when a uniform plane

electromagnetic wave is incident from a free-space region on a conducting surface.

in which the minima of the amplitudes of electric field is found to coincide with the

maxima of the amplitudes of magnetic field, and vice versa. Also, there is no power

flow in such a standing wave (Chapter 7).
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• Reflection and refraction of electromagnetic waves at a dielectric-dielectric interface can be

studied with the help of the relevant electromagnetic boundary conditions for parallel and

perpendicular polarisations.

• Brewster’s phenomenon takes place for parallel polarisation in which there is no reflection at

a dielectric-dielectric interface for parallel polarisation.

• Total internal reflection at a dielectric-dielectric interface for the angle of incidence greater

than the critical angle can be understood for both parallel and perpendicular polarisations.

• Circuit law of parallel resistances can be appreciated from the electromagnetic boundary

condition that the tangential component of electric field is continuous at the interface

between two media.

• Boundary conditions at the interface between two conducting media yield the law of

refraction of current for time-independent situations relating the angles of incidence and

refraction of current with the conductivities of the media (Chapter 7).
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• Expressions for energy and energy density in electrostatic field can be derived in terms of

the electric field and electric displacement (or electric flux density) and the analogous

expressions for energy and energy density in magnetostatic field appreciated (Chapter 8).

• Poynting theorem encapsulates the phenomenon of the storage, loss and flow of

electromagnetic energy.

• Poynting theorem can be used to appreciate Joule’s circuit law for the power loss in a wire

of circular cross section and of finite resistance carrying a direct current (Chapter 8).

• Poynting theorem has been

(i) used to derive the expression for energy density in electric field with reference to

the problem of a parallel-plate capacitor of circular cross section and

(ii) applied to the problem of an inductor in the form of a solenoid of circular cross

section to derive an expression for energy density in magnetic field (Chapter 8).

• Complex Poynting theorem gives the concept of time averaged electromagnetic power

flow and can be used to study time-averaged power flow through a bounded or an

unbounded medium and associated power loss due to the presence of a lossy conducting

medium.
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• Complex Poynting vector is half the cross product of the electric field vector and the complex

conjugate of magnetic field vector, and the ‘time averaged’ complex Poynting vector is the

real part of the complex Poynting vector.

• The outward flux of the time averaged complex Poynting vector through a volume enclosure

gives the average power going out of the volume enclosure.

• The reactive power flowing into a volume enclosure is of relevance to average energies

stored in electric and magnetic fields in the volume has been appreciated.

• Concepts of power flow developed can be applied to

 develop the concepts of the gain and effective aperture area of an antenna

 establish Friis transmission equation relating the radiated power from a transmitting

antenna to the power delivered to the load connected to a receiving antenna and

 study of conduction current antennas exemplified by predicting the characteristics of

Hertzian infinitesimal dipole, finite-length dipole, antenna arrays, including broadside

array, end-fire array and Yagi-Uda array, and loop-current antennas.

 derive an expression for the power loss per unit area in a conductor in terms of the

surface resistance and surface current density of the conductor (Chapter 8).
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• The wave equation in a bounded medium can be solved to study the characteristics of a

waveguide⎯ a hollow pipe made of a conducting material, which is extensively used for the

transmission of power in the microwave frequency range (Chapter 9).

•Waveguides

 can support transverse electric (TE) mode, which is characterized by non-zero axial

magnetic field and zero axial electric field

 can support transverse magnetic TM mode, which is characterized by non-zero axial

electric field and zero axial magnetic field

 cannot support transverse electromagnetic (TEM).

• We can obtain the characteristic equation or the dispersion relation of a waveguide with the

help of field solutions and electromagnetic boundary condition that the tangential component

of the electric field is nil at the conducting surface of the waveguide wall.

• One and the same - dispersion relation is obtained for both TE and the TM modes, for both
rectangular and cylindrical waveguide, with appropriate interpretation of cutoff frequency c in
terms of waveguide dimensions (c being the value of angular frequency  corresponding to
zero value of the phase propagation constant ).

• - dispersion plots of identical nature are generated for rectangular and cylindrical

waveguides, irrespective of TE or TM mode of excitation.
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• A waveguide behaves as a high-pass filter supporting propagating waves above cutoff

frequency c that is related to waveguide dimensions.

• A waveguide supports evanescent mode cutoff frequency c associated with nil

component of the average Poynting vector in the direction of wave propagation

corresponding to nil power flow in the waveguide (Chapter 9).

• The characteristic parameters of a waveguide are guide wavelength, phase propagation

constant, phase velocity, group velocity, and wave impedance, each of them depending

on the operating frequency relative to the cutoff frequency of the waveguide. (Chapter 9)

• Dominant mode of a waveguide, characterized by the lowest value of the cutoff

frequencies of all the TEmn and the TMmn modes of the waveguide, is mode TE10 for a

rectangular and mode TE11 for a cylindrical waveguide.

• For a rectangular waveguide, the mode number m indicates the number of maxima of

the field component along the broad dimension of the waveguide, while the mode

number n indicates the number of maxima of the field component along the narrow

dimension of the waveguide. Alternatively, m and n can be interpreted as the numbers of

half-wave field patterns across the broad and the narrow dimensions of the waveguide

respectively.
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• For a cylindrical waveguide, the mode number m indicates the number of half-wave field

pattern around the half circumference and n indicates the number of positive or negative

maxima of the field component across the waveguide radius.

• The expression for the power propagating through a rectangular waveguide above cutoff

frequency can be found and interpreted to predict the power handling capability of a

waveguide, which shows its dependence on the breakdown voltage of the medium filling the

hollow region of the waveguide, the operating frequency and the waveguide dimensions

(studied with respect to a rectangular waveguide excited in the dominant mode).

• The expression for the power loss per unit length of the walls of a rectangular waveguide

due to the finite resistivity of the material making up the walls has been developed and used

to find the expression for the attenuation constant of the waveguide (studied with respect to

a rectangular waveguide excited in the dominant mode).

• Attenuation constant of a waveguide depends on the operating frequency and the

waveguide dimensions, which should be taken into consideration while choosing the

waveguide mode and frequency from the standpoint of lower values of attenuation in the

waveguide (Chapter 9).

• A hollow-pipe waveguide of an appropriately chosen length with both its ends either closed

by a conductor or kept open makes a waveguide resonator (Chapter 10).
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• Transmission line theory, which is an easy approach of treating a waveguide resonator, is

worth developing. This has been done encompassing

o the basic concepts such as distributed line parameters;

o telegrapher’s equation,

o condition for distortionless transmission,

o input impedance of the line terminated in a load impedance,

o characteristic impedance of the line,

o voltage standing-wave ratio (VSWR) of the line,

o impedance matching such as in radome for the protection of an antenna and branch-

type radar duplexer of a radar system, and

o theory of Smith chart and its application to transmission line problems to make them

simpler.

• Resonator length of the waveguide resonator has been found by transmission line theory as

an integral multiple of half the guide wavelength for both closed-ended and open-ended

resonators. Its resonant frequency can be found with the help of transmission line theory

using the dispersion relation of the waveguide.

• Field solutions and electromagnetic boundary conditions typically for a rectangular closed-

ended waveguide resonator has yielded

 resonator length that is same as that predicted by the transmission line theory and

 additional mode number p of the waveguide resonator, to be read with reference to

TE10- mode excitation of the waveguide as TE10p mode of the resonator (which may

be generalised as TEmnp mode of the resonator with reference to TEmn-mode

excitation of the waveguide).
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• Field solution and relevant electromagnetic boundary conditions can be used to obtain

 expression for the time-averaged energy stored in electric and magnetic fields and

 expression for the power loss in resonator walls (Chapter 10).

• Expression for the quality factor of a resonator in the TE101 mode at the resonant frequency, in

terms of the resonator dimensions and the surface resistance of the conducting material

making up the resonator, can be derived with the help of the expressions for the time-

averaged energy stored and power loss in the resonator (Chapter 10).

• Relation between the unloaded quality factor, external quality factor and loaded quality factor

of a cavity has been obtained keeping in view some part of energy stored in a cavity being

coupled out from it to an external load in practice.

• An alternative expression for quality factor can be arrived at by considering the waveguide

resonator as a resonant circuit comprising an inductor, a reactance, a capacitor and a resistor,

all connected in parallel. Then the quality factor can be expressed in terms of the resonant

frequency of the circuit and the bandwidth of the frequency response of (1/2)(|Zeq|/R)2, i.e.,

half the value of the square of ratio of the magnitude of the equivalent impedance to resistance

of the resonant circuit (Chapter 10).
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▲ The book covers all the elementary concepts with detailed derivation of

the steps of analysis making the learning of the subject interesting and

enjoyable.

▲ The book has been substantiated by a large number of worked-out

examples and appendixes in the text of the chapters.

▲ The book provides thought-provoking chapter-end summarising notes and

review questions with answers/solutions of narrative, numerical and

multiple-choice, objective types.

▲ The book inspires students to take up more challenging problems of

practical relevance.


