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To analyse and characterise waveguide resonators

T Tapics dealf with >

Transmission line theory as an approach to study waveguide resonators

Distributed transmission line parameters

Telegrapher’s equations

Distortionless transmission line

Input impedance of a transmission line terminated in a load impedance
Transmission line theory as applied to a duplexer of a radar system

Transmission line theory as applied to a radome of an antenna

Characteristic impedance of a transmission line

Reflection coefficient and voltage standing wave ratio (VSWR) of a transmission line

Finding the load impedance of a transmission line from the shift of its standing-wave
pattern when a short replaces the load impedance



Theory of Smith chart and its applications to transmission line problems
Closed-ended resonator analysed by transmission line theory
Cylindrical waveguide

Inability of a hollow-pipe waveguide to support a TEM mode

Power flow and power loss in a waveguide

Power loss per unit area, power loss per unit length and attenuation constant therefrom

T Bockground

Maxwell’'s equations (Chapter 5), electromagnetic boundary conditions at
conductor-dielectric interface (Chapter 7), basic concepts of propagation of
electromagnetic waves through a waveguide (Chapter 9) and those of
circuit theory




Difficulties of storing microwave energy at microwave frequencies in conventional tank circuit
consisting of an inductor in parallel with a capacitor:

* Radiative loss due to part sizes becoming comparable to the operating wavelength
* Increased resistive loss due to skin effect
» Difficulty of fabricating inductors and capacitors due to their tiny sizes

l

Difficulties alleviated by storing energy in a microwave resonator formed out of a designed
length of a hollow metal-pipe waveguide:

* Closed-ended waveguide resonator

» Open-ended waveguide resonator

How to find the length of the waveguide—closed-ended or open-ended—-that would make it a
resonator?

We have found this length by treating a waveguide resonator as equivalent to a transmission
line —an alternative to the field theory approach that uses Maxwell’s equations, wave
equation, electromagnetic boundary conditions, Poynting theorem, etc.

Therefore, in what follows, we present the fundamentals of transmission line theory (that is in
vogue for the analysis of a transmission line like a two-wire line or a coaxial cable).



Let us present here the fundamentals of transmission line theory to be used for treating a waveguide
resonator. It becomes convenient to treat a transmission line with the help of distributed transmission
line parameters to represent an infinitesimal length of it.

Distributed transmission line parameters L, C, R and G to represent an infinitesimal length of a
transmission line:

Series inductance per unit length, L ,of the line accounting for the energy stored in electric field
Shunt capacitance per unit length, C, of the line accounting for the energy stored in electric field
Series resistance per unit length, R, of the line accounting for the power losses in the conductors

Shunt conductance per unit length, G, of the line accounting for the power losses in the dielectric, if
present in the region between the conductors

By choosing the infinitesimal length of the line Az—0, we can treat the individual elements of
line section of infinitesimal length Az as lumped circuit elements and apply the laws of the
circuit theory such as Kirchoff’s laws for the analysis of the line.

(See the Note to follow)



Note:

In the definition of the distributed line parameters representing a transmission line, the following is
implied:

(i) Effect of the size of a circuit element relative to the operating wavelength is not ignored as could
be done at low frequencies;

(i) Effect of the finite time of travel of signal along the electric circuit is taken into account in the
analysis for frequencies greater than a kilohertz while assigning electrical quantities such as the
voltage, current, resistance, capacitance, etc;

(iii) Due to the transit-time effect, there will be a non-zero reactive drop for a lossless transmission
line even though its resistive voltage drop could be zero;

(iv) Higher the operating frequencies, the manifestation of the transit-time effect in the reactance
effect becomes more pronounced;

(v) Current | and voltage V continuously vary from point to point along the length of the line,
warranting the use of a cascade of individual ‘discrete’ elemental line sections, each of
infinitesimal length Az, chosen small compared to the operating wavelength 4;

(vi) By choosing Az—0, the individual elements of line section of infinitesimal length Az of the
distributed transmission line model can be treated as the lumped circuit elements, thereby
allowing the application of the laws of the circuit theory such as Kirchoff’s laws for the analysis of
the line.



Rdz Series resistance due to the finite conductivity of the conductor used in
— making the transmission line, accounting for ohmic power loss in the
conductor

Ldz —— Series inductance associated with the magnetic flux due to the current through the
transmission line that links with the conductors making up the line, which takes
into account the energy stored in the magnetic field

Cdz —— Shunt capacitance between the conductors of the transmission line because of the
existence of an electric field between the conductors insulated by a dielectric medium

Gdz —— Shunt conductance between the conductors of the transmission line, often referred
to as leakage conductance or ‘leakance’, which manifests itself because of leakage
current flowing between the conductors through the insulating dielectric if it is not
perfect, thus accounting for the dielectric power loss in the insulator

ol
L =
; Rdz dz I+a§7dz
Representation of an infinitesimal [ v | \
length of an element of a — Cdz—— Gd oV
transmission line by distributed line v § © Vi—_dz
parameters \\ 4/




Voltage at the input end of the transmission line of infinitesimal length =V
Voltage at the output end of the transmission line of infinitesimal length =V +(0V /0z)dz
Current at the input end of the transmission line of infinitesimal length =/

Current at the output end of the transmission line of infinitesimal length = (/ +0I / 0z)dz

ol
V- (V ¥ dz) = I(Rdz) + (Ldz)g | Rdz Ldz I+ dz
1074 ot /' * * - ‘\
l 4 G ngZ v g
> —(]R +L gj \ i
I l a ol o
oV . N e s
a_:_(R+]wL)] T 1 [—I—aZdZ—I—CdZ Py +GdzV
“ A In view of time dependence: l
exp(jar)
> g = _(GV + Ca_Vj
Oz ot
|
. ol .
Telegrapher’s equations > p =—(G+ joC)V
z



o =—(R+ jwL)I (rewritten) % =—(G+ jwC)V (rewritten)
4

oz
14— Taking partial derivative /

2
v —(R+ja)L)g:(R+ja)L)(G+ja)C)V
z

0’z

2
OV R+ joLXG+ joC)

o’z

l — 7V =(R+joL) G+ joC)

, .
o2 Solving . V:Aexp(_yz)+BeXp(7Z)

<— Invoking time dependence exp(jar)

V =[Aexp(~y z)+ Bexpy z]exp(jot)



V=[Aexp(—yz)+ Bexp(yz)|exp(jot) (rewritten) 7> =(R+ joL) G+ joC) (rewritten)

V =Aexp(—az)exp j(wt— [ z) ) | | .
+ Bexp(a z)exp j(wt + B2) y=[(R+jo LG+ jaC)]

(expression for the voltage on the transmission line)

y=o+jp —»J

a+ jB=[(R+ joL)G+ joC)]"”

|

0 = tan”! (22 ] a+ jB=[(R*+a&’ )" exp(jO) G +w’C*)"*exp(jb,)]"”
=
R
oC T =[(R* + 0’ *)(G* + &’ C*H]"* exp](g +0, j
0, =tan" — 2

|
a+ jB=[(R*+ @’ *)(G + 26)1”{ {%L jsﬁl(@;@ﬂ

10



a+ jB=[(R*+&*[})(G*+ 2Cz)]”“{ {—0 o, ) + jsin(—gl ;‘92 ﬂ (rewritten)
\ <— Equating real part \ <— [Equating imaginary part

a = [(R2+a)2L2)(G2+a)2C2)]1/4005[0 ;Qj ,B [(R -I—C()L )(G2+a) Cz)]1/4sm((9 -I-@j

Let us next find an expression for the current on the transmission line.

V =[Aexp(—y z)+ Bexpy z]exp(jwt)

(expression for the voltage on the
transmission line) (recalled)

G_V =—y Aexp(jot)exp(—y z)+y Bexp(jwt)exp(y z) %—V =—(R+ jwlL)I (recalled)
Z

&z
oV T —

J__ oz __~rAexp(jonexp(=yz)+y Bexp(jot)exp(y z)
R+ joL R+joL

11



ov

__ & __~rAexp(jonexp(-yz)+y Bexp(foNexp(y2) . itten)
R+ joL J R+joL
I=—"[Aexp(~yz)~ Bexp(y 2)lexp(jwr)
R+jolL

J — 7=[(R+ joL) G+ joC)]"”

I= —[AeXp(—7Z) Bexp(y z)]lexp(jwt)
R+jolL

7 _ LAexp(=y z) -~ Bexp(y z) Jexp(jw?)

1/2
R+ joL
G+joC

A

R il 1/2
+ o
Z,= ]
G+ jowC
(Characteristic impedance of

[ = AXPCr2) =Bexp(2) o ion the line)

Z,

(expression for the current on the transmission line)



Distortionless transmission line

The information or signal that we transmit through a transmission line is composed, in general,
of a number of frequency components. For distortionless transmission, two conditions need to

be satisfied:

(i) all the frequency components constituting the signal should simultaneously reach the same
receiving point on the line, which also implies that the phase velocity of the wave, v,
supported by the line should be constant with frequency, or in other words, the line should be
‘dispersion-free’ and
(i) the attenuation constant « of the line due to line losses, if any, should be the same for all

the frequency components of the signal.

Does a lossless transmission line (R = G = 0) satisfy the distortionless condition?

Lossless line

|

R=G=0 —

L
6, =tan™ or
R
0, =tan" —
(recalled)

(recalled)

B=[(R* +0*I*)G* +w Cz)]”“sm(‘g ;9 j

(recalled)

N

l

a=[(R*+o'L’) (G +a’C*)]"c {—9 ;sz —

— g =0,=tan' 0=r/2

cos(r/2)=0
}

a=[0’L*)@’C*)]"* cos(r/2)=0

sin(z/2)=1

|
p= [a)sz)(a)zCz)]”4 sin(7r/2)

— a)(LC)l/z

13



For a lossless line (R = G = 0) we obtained earlier

a=0

— f[=

a)(LC)l/Z

The attenuation constant « and phase velocity v,
of the line are both constant with frequency,
suggesting that the lossless line (R= G =0)is a
distortionless line.

Can you show that if the distributed line parameters of a lossy transmission line satisfy
the relation RC = LG, then the line becomes a distortionless line?

a=[(R*+&’ )G +&’C*H)]"* cos(—é)1 ;ezj

l

o =

JRG(( s

2L2

1/4 6, +0,
1 eof 422

6, +06

")

B=[(R*+ & *)(G* +’C*)]" sin(

l
B=

o ’—[1+ 6, + 0,

2

)(1+

2 2

e

14
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o =

JRG[(1+ 2L2

L
R

l

)1+ 2C2)]”4co{_6’1 ;6’)

(recalled)

RG(1+

l

;Lz )1/2 COS(

0,+6

’

2

¢ _ pc=16 .. R_G
G L C

(condition)
- N
IB =
G’ 1/4
o LC[1+ 2L2)(1+ — s
(recalled)
,BZG)\/E(I_F 1522)1/2 sin(

(0+9
2

6, +06

)

2

)
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L_C _ prc=LG
R G

(condition)

) L oL ]
sin @, = ol 91=tanl?
JR + & I’ — L 9 =0,
R g, =tan™ @C
) = hadhad
cosf, = \/R2 Y= G )
J (recalled)
272 R? . (6 +6
o= RG(I + G)Rf )1/2 Co{#j ,B = W LC(l + a)sz )1/2 Sm(%j
(recalled) (recalled)
212 R? .
a=+RG(+ a)Rf )% cosé, B =awVLC (1+ 7 )"'?sin 6,

16



: @ L
sin G, =
JR + & I’
cosle\/ = K —
/ R +o" L ) \
2712 2
05=VRG(1+COR§ )1/2008671 (recalled) ,3=COVLC(1+CO2L2)1/ZSin@1 (recalled)
i o'l ) R i R’ wL
a=vRG(1+—-) =JRG B=oJLC(1+—)" =wVLC
B [Rral N
NI
" B JLC

The attenuation constant « and phase velocity v, of the line are both constant with frequency, thereby
suggesting that that the lossy transmission line can be made distortionless if the distributed line
parameters satisfies the relation RC = LG.

17



Reflection coefficient of a transmission line

Let a transmission line of length / be terminated in
load impedance Z,. We consider the source end to be
located at z = = —/ and the load end at z = 0.

V =[Aexp(—y z)+ Bexp(y z)]exp(j wt)

Z=-1 Z=0

I Aexp(—y z)—Bexp(y z)

exp(jwt)
(recalled) Zo
l (recalled)
«— z=0 ——>
V|, =(A+B)exp(jax) I _ = A-5 exp(jar)
\ / - ZO
lez :A+B:A+BZO Zz:A+B
I.,, 4-B A-B Z, A-B
Z, i
(load impedance)
F = E = Zl _ZO
4 Z+2Z,

(reflection coefficient)
18
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Input impedance of a transmission line

V =[Aexp(—y z)+ Bexpy z]lexp(jwt) I = Aexp(-y Z)Z—Bexp(y ?) exp(jwt)
| — = — l
V. =[dexp()+ Bexp(—)]exp(jor) g <A );B PN (o)

\ —

Zl,n = _Z Aexp(yl)+BeXp(—}/l) (input impedance)
I, " Aexp(yl)—Bexp(-yl)
B
eXp(71)+AeXp(—71)
Zin - ZO

B
exp(y 1) — 7 exp(—y 1)

19



B
exp(71)+Aexp(—7/l) B -7
Z, :Zo (rewritten) <« i (recalled)
' B A Z,+7,
exp()/l)—Aexp(—yl)
Z -7
exp(y )+ =L—"2exp(—y!
7 =7 Porh Z + 2, Py ) (Z +Z,)exp(y ) +(Z, — Z,) exp(-y )
in ~— %0 _
exp(yl)—?_i_ZO exp(—yl) (Z +Zy)exp(yl)—(Z,—Z,)exp(-y )
[ 0

l <— Rearranging terms

_exp(y)+exp(=y 1)
o Zlexp(r D) +exp(—y D]+ Z[exp(y ) —exp(=y D)] cosh(y/) = .

" Z,[exp(y ) —exp(~y D)+ Z,[exp(y [) + exp(~y )] sinh(y /) = exp(y ) —exp(—y 1) |
l 2
7 Z,cosh(yl)+ Z,smh(y 1)

= : (input impedance)

" Z sinh(y 1)+ Z, cosh(y])

in

in

20




Z, cosh(y 1)+ Z, sinh(y 1)

=7 (input impedance) (rewritten)

" 7Y Z sinh(y 1)+ Z, cosh(y )

<— Dividing by cosh(y /)

Z,+Z,tanh(y /)

=7, (input impedance)

"% Z tanh(y 1)+ Z,

l <— Rearranging terms

Z,+Z,tanh(y /)

= Z (input impedance)

" % Z +Z tanh(y[)

(general expression for the input impedance of a transmission line which)

Let us next read this general expression for the input impedance the line for a lossless line.

21



Input impedance of a lossless transmission line:

Let us take a lossless line (R = G = 0) for which we obtained earlier:

y=a+ jf (recalled)

l

y = jp (lossless line)

!

Z,+Z,tanh(jB1)

=7 (lossless line)

" 0 7 +Z tanh(jBI)

le— tanh jfl = jtan fI

Z,+ jZ,tan(fB1)

7 = Z (lossless line)

" 70+ jZ, tan(B1)

a =0 (lossless line)
L =aw(LC)"

a+ jB=[(R+ joLl)G+ joC)]"”

22



Input impedance of a lossless transmission line that is short-circuited at the load end:

., Z,+ jZ,tan(BI)

— /. =7 (lossless line) (recalled)

"0 7o+ jZ, tan(B1)
le— Z,=0

Z. = jZ,tan Bl (short-circuited lossless transmission line at the load end)

Input impedance of a lossless transmission line that is open-ended at the load end:

Dividing the numerator and denominator each by Zz

|

Z
1+jZOtan(,Bl)
Zin Zo l <— Putting for an open-ended line Zz =00

Z, .
24t [
5 T an(fS1)

/

l
o,
Jan(B) 7 tan(Bl)

(lossless transmission line open-ended at the load end)

=7, =—jZ,cot(f])

in

23



Quarter-wave transformer and its use in a radar duplexer:

Z. = j/Z,tan Bl (short-circuited lossless transmission line at the load end)

27 )
vy
S (quarter-wave transmission line: [ = 1/4)
A
[=—
4
2. A

Z, = JjZytan fl = jZ, t&m[(—)(—)] JZ, tan( )= (jZ)(0) =

(short-circuited lossless quarter-wave transmission line of length / = 1/4 at the load end)

Thus the input impedance of a short-circuited lossless quarter-wave transmission is
found to be infinity.

24



1 , 1
Ly =Ly——————=—Jly————
jtan(f1) tan(S/)

(lossless transmission line open-ended at the load end)

=—jZ,cot(f])

- L (quarter-wave transmission line: | = 1/4)

Z, =—jZy,cotfl=-jZ, cot[(%”)(%)] =—jZy cot()]=(~jZ,)(0) =0

(lossless quarter-wave transmission line open-ended at the load end)

Thus the input impedance of a lossless quarter-wave transmission line open-ended at
the load end is found to be zero.

25



Transmission line theory as applied to a duplexer of a radar system

In a radar system, the signal power is sent to a target in pulses and the echo signal is received
between pulses.

The duplexer in the radar permits the use of a single antenna in both transmitting and receiving
modes of the radar. In the transmitting mode the duplexer allows the transmitter to send signal
power to the antenna for radiation while protecting the receiver from the transmitted power and, in
the receiving mode, allows the signal power to be received by the receiver.

In the transmitting mode the duplexer allows the transmitter to send signal power to the
antenna for radiation while protecting the receiver from the transmitted power

In the receiving mode the duplexer allows the signal power to be received by the receiver.

26



Branch-type radar duplexer:

A4

Transmitter
ﬂ Antenna

Transmit-receive (TR) and anti-transmit-receive
(ATR) switches (both, typically, gas-discharge
type) are turned on (by gas ionisation discharge) N4 aa
when the radar sends signal power pulses and
turned off (by gas deionisation) between pulses.
TR and the ATR switches primarily disconnect
the receiver in the transmitting mode and
disconnect the transmitter in the receiving mode.

ATR TR

Receiver

TR switch is located toward the antenna end in the branch line T

at a quarter wavelength (4/4) distance from the main line the Branch-type radar duplexer
antenna end. It is terminated in the receiver.

ATR switch is located toward the transmitter end in the branch
line at a quarter wavelength (4/4) distance from the main line. It
is separated from TR switch by a distance of 1/4 measured on
the main line.

27



Input impedance of a short-circuited lossless quarter-wave (4/4) transmission is

infinity. (recalled)

Input impedance of a lossless quarter-wave (1/4) transmission line open-ended

at the load end is zero. (recalled)

Transmitting mode:

(i) TR switch turns on and short circuits the
transmitted thereby preventing it from
entering the receiver. (ii) Branch line
containing TR switch with its terminating
end shorted presents infinite impedance at
the main line 1/4 away from it and does not
impede power flow in the main line to the
antenna. (lii) Similarly, ATR switch also
turns on and presents infinite impedance at
the main line and does not impede power
flow in the main line to the antenna (as in (ii)
above).

A4

Transmitter
—> Antenna

ATR TR

Receiver

Receiving mode:

(i) ATR switch turns off and makes the branch line containing
it open ended thereby presenting zero impedance at a point
Al4 away on the main line. (ii) TR switch turns off and
similarly presents zero impedance at a point on the main line.
(iii) Received power sees infinite impedance toward the
transmitter end at a point on the main line where it is
connected to the branch line containing TR switch since this
point is /4 distance away from the zero impedance point on
the main line connected to ATR switch via the branch line
(see (i) above). (iv) Since received power sees zero
impedance point toward receiver (as in (i) above) and infinite
impedance toward transmitter (see (iii) above), and it goes to
the receiver instead of transmitter taking the lower
impedance path. 28



Transmission line theory as applied to a radome of an antenna

Let us exemplify the transmission line theory to determine the thickness of a radome that is used to
protect an antenna while for this purpose by first appreciating that the input impedance of a half-
wave lossless transmission line is the same as the terminating load impedance of the line and hence
finding the thickness of a radome, treated as a lossless transmission line, made of a fibre glass of

dielectric constant 4.9 and taking the operating frequency as 3 GHz.

Z,+ jZ, tan fl

Z =1, (recalled) (lossless line)

" Z+jZ tan A

Here, | corresponds to radome
I=4/2 ) thickness

ST Bl=Qr/AI=Qr/A)(A/2)=n
tan(fl)=tanz =0

V

Z
Z,=2,—=2,
Z

0
(input impedance of a half-wave line treated here as a lossless line becoming equal to the load
impedance)

From the physical point of view, taking the thickness of the radome as 4/2 will ensure a path
difference of the wave reflected from the radome as A, thereby making it in anti-phase with the
incident wave and hence causing the cancellation of the incident and reflected waves resulting in the

matching of the radome to the incident wave.
29



Z =27, é =/, (rewritten)
Z
0
We have found the input impedance of a half-wave line as equal to the load impedance. This
concept may be used to find the thickness of the radome. In the present context, if we take the
thickness of the radome treated as a transmission line of length / = 4/2, then since the load
impedance is here the free-space intrinsic impedance 7,, we obtain

Z,=24,=1, (input and load ends of the radome each being both a free space medium)

In the present example
27

2 2 B 2r
P ooue o\ueeE, 21 fylEe,
I T T £ =49
= - - |
Se s, [ e, £ =3GHz=3x10" Hz | """

l
~3x10° 1

iff 3x10° /4.9

1=

=0.04517m=45.17 mm

A/2=45.17/2=22.59 mm

(required thickness of radome)

30



Let us further numerically appreciate the problem of finding the input impedance of a 3-cm
long lossless transmission line of characteristic resistance 50 Q, which operates at 3.2 GHz
and is terminated in load impedance Z, = 25-j15 Q.

N

ZO - 50 Q [=3cm >
[=3cm _ *
9 - (given) Generator C
f =32GHz=3.2%x10" Hz f of @ 50Q transmission line 2.2(25115)0
7,-25- /150 | s \
J/ Zin g
P Z,+ jZ, tan S A=c/ f=(3x10")/(3.2x10")=9.375cm
"0 7+ jZ tan Bl Bl=2x/ )] =2x/9.375(3) =2.01
(recalled)
Separating the real and
_ 7 ; [ ' rt
7 =502 =/15+(50)(tan2.01) eI AT Z =109.5-j13.6Q

4 50 + j(25 — j15)(tan2.01)

31



Characteristic impedance of a transmission line

_ Aexp(yl)+ Bexp(—yl)

in — (input impedance) (recalled)

4 exp(y!)—Bexp(—yl)

«— [=w (the second term of each of the numerator and the denominator becoming

significantly less than the first term)
(infinitely long line)

\

7 v _5 Aexp(yl):Z (

=— = infinitely long line)

5 ! z=—1 " A eXpO/ l)

The characteristic impedance of a transmission line may be thus identified as the input
impedance of an infinitely long line (/= «).

Next let us find the value of the input impedance of a transmission line of finite length that is
terminated in the characteristic impedance.

32



Z,+Z,tanh(y /)

= Z (input impedance) (recalled)

"% Z tanh(y 1)+ Z,

< Zz =Z0 (terminating load impedance s
being tak.en.as. the R+ jolL
characteristic impedance Z;) —> L, =|

G+joC
., Zy+Z,tanh(y]) o
— 40 — £ (characteristic impedance

4 Z, tanh(y )+ Z,

defined earlier in terms of the
line parameters)

Thus the characteristic impedance of a transmission line may be identified as the terminating load
impedance of the line that makes the input impedance of the line equal to the load impedance.

33



Voltage standing wave ratio (VSWR) of a transmission line

The superposition of the forward and backward waves on a transmission line will give rise to
standing waves. Consequent to such superposition, the magnitude of the line voltage
becomes alternately maximum and minimum down the length of the line. We can then define a
quantity called the voltage standing-wave ratio (VSWR) as the ratio of the magnitude of the
line voltage maximum to the magnitude of the line voltage minimum as VSWR =/,

max min| *

V =[Aexp(—jfz)+ Bexp(jf z)]exp(jor)

y=a+ jf (recalled) a =0 (lossless line)

l

¥ = j (lossless line)

l

V=[Aexp(-yz)+Bexpyzlexp(jot) —> V =[Aexp(—jfz)+ Bexp(jfz)]exp(jar)

(recalled)
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V=[Aexp(—jPz)+Bexp(jfz)]exp(jwt) (rewritten)

<— Dividing by Aexp(—jf z)

\ Rearranging terms
4 BEXPULD) o) AN %:[l—l—%exp( j2B82)]exp j(at - Bz)

Aexp(—jfz) —  Aexp(—jfz)

Defining the load end of the line as the reference ——>
pointz=20

Normalised potential at a distance z = — d from the load end:

[, = % (recalled) N g =[1 +§exp(—j2ﬂ d)]exp j(wt+ pd)

(reflection coefficient) l

% =[1+TI;, exp(—j25 d)]exp j(wt + fd)
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=[1+1, exp(—j28d)]exp j(ewt+ fd) (rewritten)

S Fz — ‘Fz‘ exp(]' 6?) (reflection coefficient expressed in terms of
its magnitude [[;| and phase ¢)

= [1+‘F,‘expj(@—Z,Bd)]expj(a)t+,Bd)

NN o

N «—

In general a complex quantity assuming real
values for specific values of 9-244

=1+|[|exp j(6-2pd) <—

(magnitude of normalised voltage amplitude)
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m =1+ ‘1“]‘ eXp ](9 — 2,8 d) (magnitude of normalised voltage amplitude) (rewritten)

Can be represented by E; in the following vector diagram:

\i

/

In order to reach the point P, we can rotate the
vector QP through an angle @ from its reference

@ = 0 anticlockwise with its base fixed at O around

the circle of radius‘rl‘ .

In order to reach the point P we can then rotate the
same vector around the same circle now clockwise
from its position P through an angle 25d.

AP =

AO + OP

|

has magnitude unity and
is directed along the
reference 6= 0.

has magnitude LFILand its
direction depends on the
location of the point P on a
circle of radius ‘Fl‘ which
also depends on the
distance d of P from the
load.
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_

The length of the vector 4P representing the magnitude of normalised
voltage amplitude‘V‘ / 4 takes on maximum value AM = 1+ ‘Fl‘ for @-2d=0,2r,4r,....

_—

The length of the vector AP representing the magnitude of normalised
voltage amplitude r / A takes on minimum value AM/ =1 —‘I’l‘ for @-2pd=rn,3r,5n7,....

1+
vswR =AM _ V| 14T
AM' V.l 1-T)
2PAd =21 <— A d representing the distance
2T between consecutive
,B = —> maxima
A Ad = distance between

o
Jij / consecutive minima

A
Ad=Z
9 38



In a simple illustrative example let us find the reflection coefficient and VSWR of a
transmission line for three situations of line termination: (i) line terminated in a short (ii)
line open-ended at the load end and (iii) line terminated in characteristic impedance Z,.

(i) Line terminated in a short:

Z,=0
J
FZ:ZZ—ZO:O—ZO:_I —> [r|=1 _%VSWR=1+‘FI‘:1+1 _2_
Z,+Z, 0+Z, -] 1-1 0
(i) Line open-ended at the load end:
Z, =
\
Z,-7 _? -2,
Fl: l_ O: Z: OO: _ :1_% F:l _ _1+‘Fl‘_1+1 _%_
Zi+Zy 1140 1% 140 I VSWR_l—\rZ\_l—l_o_oo
Z, 00
(iii) Line terminated in characteristic impedance:
Z, =27,
¥
_ _ 1+ 1
R4 %t O o -0 — vswr= M 140 39
Z+7Z, Z,+Z, 2Z, -, 1-0




In another example let us calculate the reflection coefficient and the VSWR a transmission line
of characteristic resistance 50 Q if it is terminated in complex impedance of 25 + j100 Q.

[ 25410050 -25+/100 . _Z-Z, __ Z;=25+j100£2} given)
' 25+,/100 +50 75+ 100 ' Z+2, Z,=50Q

|

[ _=25+/100 75— 100

75+ 100 ~ 75— j100
 —25%75+ j25x100+ j100x75+100x100
(75)* + (100)?

|

I|= (0.8 +(0.36)* =0.877 —— VSWR =

=T, =0.8+0.36Q

1+ _1+0.877
1-,| 1-0.877
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In yet another illustrative example let us show that, for a transmission line supporting a
standing wave, the impedance at the voltage maximum is Z__, = (Z,)(VSWR) and the
impedance at the voltage minimum is Z_;, = Z,/ VSWR.

@ =1+|T}|exp j(@-2fd) (recalled)

(magnitude of normalised voltage amplitude)

— T

‘Vmax
:1+‘Fl‘ ‘Vmin
Poel 1y
(corresporling tof—-2d =0,2x,4r,....) (correspondng to —-2p3d =r,3r,5x,....)
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v N
2 =141
7 ‘Vmax A
max ] . ]min (
‘ min A = 1 — ‘Fl‘
Z,
(recalled)
1+
VSWR = ——
/ -
7 ‘Vmax _ 1+ ‘Fl‘ — (Z )(VSWR)
e ‘[min " 1_‘1_}‘ ) O

_ ‘Vmin

min
‘]max

(recalled)
1+[T|

VSWR =
1-IT|
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Finding the load impedance of a transmission line from the study of its standing-wave patterns

In this method, the distance of the first voltage minimum from the load end or alternatively
the spatial shift of the voltage minimum of the standing-wave pattern on the length of a

transmission line when a short replaces the complex impedance at the terminating load end
is interpreted to find the load impedance.

Z, =0 (fora short at the load end)

/

; :‘Z’ 2o (reflection coefficient in terms of load impedance recalled)
Z,+7Z, .
exp(j0) =-1
0-Z2 ¢
— _ 0 = — — r = F .e —> -1 —
L=07z !  =|T]exp(;0) L|=106=x

(reflection coefficient in terms
of its amplitude and phase 6)

0-2pd=rn3r5nm,....

(condition for voltage minimum at a point on the line that is distant d from the terminating
load end)

(for a short at the load end)

7=2pd =n3757r,... (0= rfora shortatthe load end)
(condition for voltage minimum at a point on the line that is distant o from the terminating
load replaced by a short)
O=r+2p0(d—-d)=n+2PAd <—— d—d'=Ad (shiftin minima when the terminating load

i 43
(taking the difference between the above two conditions) 's replaced by a short)



/ d—d'=Ad
O=rn+28(d—d")=r+28Md
(rewritten)

Ad is interpreted as positive when the voltage standing-wave pattern shifts towards the load
end when a short replaces the complex load at the terminating end (d’<d).

This also implies that the first voltage extremum from the load end is the voltage minimum at
a distance Ad for a complex load, the first voltage minimum however shifting to the location of
the short when the latter replaces the load (Fig. (a)).

Ad is interpreted as negative when the voltage standing-wave pattern shifts towards the
source end when a short replaces the complex load at the terminating end (d’>d).

This also implies that the first voltage extremum from the load end is the maximum at a
distance Ad for a complex load which would shift to the location of the source such that a
minimum coincides with the short when the latter replaces the load (Fig. (b)).

(a)

(b)
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VSWR:1+‘FZ‘ s VSWR_I‘F‘FZ‘ _ VSWR—1:(1+‘FID_(1_‘FID:2‘1_}‘:‘1'*‘
1-|r;| I 1-[ VSWR+1 (1+[p+a-rp 2

(recalled) l
[, =} exp(j6)

l exp(j@)=cosf+ jsinf

_ vswr-1_ ¢
[ = VSWR 1(cosé’+jsin6?) «~— I, = kil exp(j6)
VSWR +1 VSWR +1
l i O=m+2PAd (recalled)
VS —1
[ =(Vsﬁ+J(cos(7r+2,8Ad)+jsin(7z+2,BAd))

l

r__[VSWR-I
: VSWR +1

j(cosZ,BAd + jsin2 fAd)
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r:Zz—Zo . EZZI—ZO R 1“1+1:(ZZ—ZO)+(ZZ+ZO): 27, __é
! Z,+7Z, 1 Z+Z, I -1 (Z,-2)-(Z+Z2,) -2Z, Z,
(recalled) l
VSWR -1
I=-— cos2BAd + jsin 2 SAd
: (VSWRHJ( phd + jsin2fibd)
(recalled) \ /
Put together
7, = 1+, Z,
1-T,
VSWR -1
=— cos2PAd + jsin 2 fAd
: (VSWRH)( phd + jsin 2fibd)

J

We can use the above expression for the load impedance Z, in conjunction with the above
expression for I, to find the load impedance.

The approach provides the theory of measurement of the load impedance terminating a
transmission line. The method involves finding experimentally (i) VSWR of the line and (ii) the
shift Ad in the minima of the standing-wave pattern which is also equal to the distance of the
first minimum from the load end. However, it is easier to find the shift in the minima of the
standing-wave pattern than the distance of the first minimum from the load end.



As an illustration, let us find the complex impedance terminating a transmission line of
characteristic impedance 50 Q that exhibits VSWR = 1.5 and gives the first extremum of the voltage
standing-wave pattern as a minimum located at a distance of 0.211 from the load end.

Ad =0.214 (given)

|

28Md = (2)27/ 2)(0.212) = 0.84x

Standing
wave

©
N
e
>

50Q transmission line Unknown
Generator @ load Z,

v

c0s2SAd = c0s0.847 =cos151.2° =—0.8763
sin 2 fAd =sin 0.847 =sin151.2° =0.4818

(VSWR 1
I =
VSWR

j(cosZﬂAdJr]stﬂAd) (recalled) «——— VSWR =15

l

= (15 j( 0.8763+ j0.4818)
1.5+1
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r= Gg 1)( ~0.8763+ j0.4818) (rewritten)
S+1

14— Simplifies to

[,=0.175-;006 —— Z = I+1, —L 7, (recalled)

1-T,

_1+(0.175-j0.096) . 1.175-0.096
'T12(0.175— j0.096)  0.825+ j0.096

_ 1.175-70.096 50 — 1.175- jO0. 096 0.825- 0. 096
0. 825+ j0.096 0.825+ 0. 096 0.825— 0. 096

(1 175-j0.096)(0.825— ;0. 096) 50— 0.9602- ;0.1920

(0.825) +(0.096)° 0.6898

x50=69.6—j13.9Q
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cofron Do 71 ’ wwf@o%&

Smith chart due to Phillip H. Smith:

« an elegant graphical tool for high frequency circuit applications, is popularly used to solve
transmission line problems

* similar to a slide rule used for carrying out calculations involving addition, subtraction,
multiplication, division, logarithmic and trigonometric functions, etc.

* can be applied to transmission line problems, for instance, to state the value of VSWR from the
value of the complex load impedance terminating a lossless line of known characteristic
resistance and find the input impedance of the line if its length is also given

In what follows, let us outline the theory of Smith chart describing the basic
features of the chart and some of its applications.

Readers can find more applications of the chart in Section 10.1.8 of Chapter 10 of
the book.
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Constant-

1"1‘ or VSWR circle of Smith chart

/Z, A+B , 1/2
L= (recalled) 7 = R+ joL
Z, A-B " G+ jwC
(Characteristic impedance of
a line)

l«—— R=G=0

(for a lossless line)
LY R+joL)
Z,=| — =R, ,sa Z,=| ———
’ (Cj Ko, say ’ G+ joC

(Characteristic resistance of
a lossless line)

Dividing the numerator and denominator of

the riyht hand side by the same quantity B

1+—
_Z, A+B l _ A
R, A-B 1B
A

(load impedance normalised with
respect to load resistance)

v
N
|

Z
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B
1+—
- A (rewritten) +—— E —T = ‘F ‘expj@ (reflection coefficient in terms of its
! | B A ! l amplitude and phase)
A (recalled)
_1+‘F,‘exp(j6?) . 1+‘F,‘exp(j6?)_r+jx

=r+ jx,sa e
JE54Y 1—‘F,‘exp(]9) 1

l

r+ jx—1 [1+|T|exp(jO)]-[1 =[G |exp(jO)] _ (r+ jx)—1

Z = ;
1_‘F1‘6XP(J )

‘F,‘exp Jjo= ; ; o .
r+ jx+1 [1+‘Fl‘exp(jﬁ)]+[l—‘Fl‘exp(jﬁ)] (r+ jx)+1
, r+ jx—1 .
I = ‘Fl‘exp jo = ]— =u-+ jv (reflection coefficient in terms of its
r+x+ real part u and imaginary part v)
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) :‘Fl‘exp j@ZH]—H

: =u+ jv (reflection coefficient in terms of its real
r+ X + part u and imaginary part v) (rewritten)

The projection of the length OP on the abscissa and
ordinate represent the real part u and the imaginary part j‘
v of the complex reflection coefficient I'; respectively.

A point P on the reflection coefficient I', plane of the

Smith chart indicating its magnitude [r;| represented by __ | |
the length OP and the phase @ represented by the angle <
between OP and u axis, O being the origin of
coordinates.

constant- x circles

T,|=0P =0OP -

(complex reflection coefficient ', plane of Smith
chart in the domain of [I}|<)

Can be read as the intercept OP’ with the u axis of a circle of radius [r;|=0P called the
‘constantT}| circle’ drawn by the user such that it passes through the point P. The length OP'=[T}|
can be read as the magnitude of the reflection coefficient of the line on a horizontal scale
provided on a commercial Smith chart. The phase 6 of the reflection coefficient can be read

on a scale provided on the periphery of the chart.

Thus Smith chart is generated on the reflection coefficient I'; plane which can also be referred to as

the VSWR plane since these two quantities are related as: VSWR =(1+[[}))/(1-[T})).

Therefore, the constant-Ti| circle can also be referred to as the ‘constant-VSWR

circle’. : 52



Constant-r and constant-x circles of Smith chart

LH =u+ jv=I, (recalled)
r+ jx+1

(real part r and imaginary part x of normalised
load impedance related to real part u and
imaginary part v of reflection coefficient)

zZ, = —L =r+ jx (defined earlier)

(normalised load impedance in terms of its real
part r and imaginary part x)

Multiplying the left hand side by a quantity

<+<— thatis equal to unity having the same

numerator and denominator

-1+ +1—-7
r alved ]x:u+jv

r+l1+jx r+l-jx

<— After a little algebra

P r— jxr—r—1+ jx+ jxr+ jx+x° B PP —1+2jx+x’

(r+1)° +x
P —1+x° L 2x
(r+1)° +x° ](r+1)2+x2

=u+ jv

(r+1)° +x°
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rr—1+x2 ) 2x

+ =u+jv itt
(r+ 1)2 +x° J (r+ 1)2 +x° JV (rewritten)

<— Equating the real and imaginary parts

PP =1+x
U= ) 5 (real part) Thus, we have expressed the real (u) and
(r+1)" +x o : -
imaginary (v) parts of reflection coefficient T,
in terms of the real (r) and imaginary (x)
2x parts of the normalised load impedance z, .

V= r+ 1)2 e (imaginary part) ——

Similarly, let us express in what follows next the real (r) and imaginary (x)
parts of the normalised load impedance z, in terms of the real (uv) and

imaginary (v) parts of reflection coefficient I, .

54



Let us now proceed to express the real (r) and imaginary (x) parts of the normalised load
impedance z; in terms of the real (u) and imaginary (v) parts of reflection coefficient T,.

r+ jx—1 , r+jpx—-1 u+jv
—————=u+ jv (recalled) > : =
r+ jx +1 r+ jx +1 1
<— By algebraic manipulation
By simplification
. ,x_1+u+jv ) | (r+px+D+(r+px-1) 1+@+jv)
/ l—u—jv (r+px+)—-(r+jix-1) 1-(u+jv)

A

r+ jx =

y

Multiplying the right hand side by a quantity
that is equal to unity having the same
numerator and denominator

«—

. . 2 2 .
l+utjv l-u+jv _simplifies to l—u"—v +2jv

> r+jx = 5 3
l—u—jv l1-u+jv (1-u)" +v
<— Equating the real and imaginary parts
1—u” =V

Thus we have expressed the real (r) —— r= 3 5

and imaginary (x) parts of the (I—u)"+v

normalised load impedance z, interms <+

of the real (u) and imaginary (v) parts v

of reflection coefficient T, . X = (1 —u)2 12 55



2 2

p= I-u 2_V ~ (rewritten) ¥ = 2v
2 2
(1-u) +v (1—u)* +v

(rewritten)

<—  With a little algebraic manipulation —

o 1 1 1
U-———)y+v=—-- u-10*+(v——)Y>=—
r+1 (r+1) X X’
(equation representing a constant-r circle on (equation representing a constant-x circle on
the reflection coefficient plane of Smith chart) the reflection coefficient plane of Smith chart)
(values of u and v varying from point to point (values of u and v varying from point to point
for a constant value r) for a constant value x)

However, before proceeding further with the above two equations representing
constant-r and constant-x circles respectively, for the benefit to readers, let us provide
in what follows next the necessary algebraic steps for the deduction of these equations.
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Necessary algebraic steps for deduction of the two equations representing
constant-r and constant-x circles respectively

2 2
l—u"—v

=
(1-u)’ +v°

(recalled) By cross multiplication . (1- u)2 n v2] 1?7

Adding the quantity 1/(1+r) to both sides

1 1 l

< ru” —2ur+r+u’ —14+v'(1+r)=0

rut =2ur+r+u’ —1+v(1+7r)+

l 2

r
ruz—2ur+(r—l+i)+uz+vz(1+r)=L — 1’ = 2ur+ ——+u AV (1) = ——
1+7 1+7 I+7r I+7

1+r:l+r

2

(1+7)| u” —2u M. ~+V’ _ — u2(1+r)—2ur+r—+vz(1+r):L
I+ (+7r) 1+r 1+r 1+7r

l<—Dividing by (1+7) Combining the first three terms

2 2 l ’ 2 1 2
W —2u———- 2+vz:(_1 — (u——j -l—vzz(—j
1+ (1+7) 1+r r+1 1+7

(equation representing the constant-r circle)

Y



By cross multiplication and
rearrangement of terms

X= R _MZ)‘; T (recalled) / » x[(1-u)>+v*]-2v=0

Adding the quantity 1 to both sides l<— Multiplying both sides by x

l

X [(u—=17+v]-2vx+1=1 < x’[(1=u)> +v*]-2wx =0

<— By rearrangement of terms
Combining the first three terms

l

x (=17 +xv =2w+1=1 > x (u—=17+(xv-1)° =1

Dividing by x2 —>l

1
32
(equation representing the constant-x circle)

=1y +(v—Ly =
X

Let us next discuss in what follows the features of constant-r and constant-x circles of Smith
chart with the help of the equations representing them derived here.
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Features of constant-r and constant-x circles of Smith chart with the help of the

equations representing them

r
(u———) +v° (recalled)

r+1 :(r+1)2

(equation representing a constant-r circle on
the reflection coefficient plane of Smith chart)

<— Examining the equation

Features of constant-r circles of Smith chart:

: 1
radius =+——
r+1
r—1 l-r l-r
uin?rcept = 1’ 4 1 ” vinte{ept = 1+ " > 1 1 0
v=0 u=>0

(constant-r circle)
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radius =+ ——
r+1

. r=1 = l1-r
uintercept_L +1’vintercept_ 1‘*‘7"’ T m

constant- x circles

(rewritten) (constant-r circle)

(complex reflection coefficient I'; plane of
Smith chart in the domain of |r;|<1 )

1) The constant-[r}| circles are concentric all having the common centre at u =0, v = 0.

1) In general, there are two intercepts of a constant-r circle with u axis and two intercepts with v axis.

(
(1)

(2) The value of r referring to a constant-r circle is near the left intercept on the chart.

(3) The constant r = 0 circle is the outermost circle of radius = 1. It is also referred to as the constant [[}|=1
circle. All the points of relevance in the chart are located within this circle. The two intercepts of this
circle each on u and v axes are u,,,..,=*Lv =41 .

int intercept

(4) All the constant-r circles meet u axis at a common point at the extreme right point of the axis
corresponding to ..., =1 .

(5) With the increase of the value of r, the radius of the constant-r circle decreases and in the limit r = o«
the value of the radius of the circle becomes zero, which means that the constant r = « circle shrinks
to a point on U axis (U = 1) 60



(6) The constant r = 0 and the constant r = « circles pass through the extreme left and right points of
the real u axis respectively.

(7) The VSWR of the transmission line is the value of r of the constant-r circle (read on the real u axis)
passing through the positive intercept of the constant-  circle with the real u axis of the chart.

Explanation:
OP" =1 cepi = :—: ‘Fz ‘ — OP = OP'
~N
N e R
1
R R e e i R C L
e

61



(8) The values of the impedance maxima and minima are the values of r of the constant-r circles (read
on the real u axis) intersecting with the extreme right and left intercepts of the constantiT}| circle
with the real u axis.

(9) The extreme left and right points of the [I}|=1 circle (constant r = 0 circle) represent the short circuit
and open circuits at the load end respectively.

(10) The VSWR of the points on the chart representing the short and open circuits at the load end is
infinity, noting that |I;|=1 holds good for each of these terminating loads.

(11) The constant-r circles with negative r values are of no relevance to the Smith chart since they
correspond to inadmissible values of both u,,..,, @nd Ve, €ach falling outside the domain of the
reflection coefficient.

Features of constant-x circles of Smith chart:
1 1
2 2 _
(u—1)"+(v——)"=—5 (recalled)
X X
(equation representing the constant-x circle)

l “— Examining the equation

: 1
radius = = —
X
| 1 1 (1 1 |
uintercept = 19 vintercept 1\ 2 —1+— s A 2 —1+—; (constant-x circle)
X X X X
v=0 u=>0
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d. + 1 constant-r circles
radius = rr—
X

u =1 v = L—l—i—l,— i—1+l

intercept intercept 2

X X X X

constant- x circles

(rewritten) (constant-r circle)

(complex reflectioh coefficient I', plane of Smith
chart in the domain of |I}|<1)

(1) The values of the constant-x circles are displayed near these circles at the periphery of the outermost
(r = 0) constant-r circle.
(

2) The radius of the constant-x circle increases with the decrease of the value of x and the radius
becomes infinite for the constant x = 0 circle, which in fact becomes a straight line coinciding with u axis.

(3) All the constant-x circles meet the real u axis of the chart at a common point which is the extreme
right point of u axis.(, =1) -

intercept ~

(4) The radius of the constant-x circle decreases with the increase of the value of x, shrinking to zero for
the constant-x = « circle at the extreme right point on the u axis of the chartg,

intercept = 1)

(5) The constant-x circles of relevance to the Smith chart correspond to the admissible values of Yinercep
andViereep falling within the domain of o<1, This, in fact, allows only the family of ‘arcs’ rather than the
full circles to be displayed on the chart.

(6) The constant-x circles for the positive and negative x values lie respectively on the positive and
negative imaginary v regions of the chart which appear as the mirror images of each other across 63
u axis for the same though opposite values of x.



The Smith Chart
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In an earlier example we had calculated the magnitude of reflection coefficient of a transmission line
of characteristic resistance 50 2 as 0.877 and its VSWR as 15.3 when it is terminated in complex
impedance of 25 + j100 Q using the expressions T, =(7,-2,)/(Z,+z,) and VSWR = (1+[[})/(1-[r)) - Let us
now use Smith chart to find the same quantities of the same line.

z(=2,12,)=(25+j100)/50 =0.5+ j2.0 <+— £ =25+ 1000 (given)
l Z,=50Q

r=20.5 [
x=2.0 -

We locate the point P as the point of intersection
between the r= 0.5 and x = 0 circles on Smith chart.
Next, we draw a circle taking the origin (u = 0, v =0)
as its centre such that it passes through the point P
intersecting u axis at the point P/.

constant-r circles

constant- x circles

We can then read the length OP'(=0P) by superposing it on the horizontal scale provided at the

bottom of commercially available Smith chart. This gives the value of the magnitude of reflection
coefficient as |I|=0P'=0.87 , which agrees with the value calculated earlier from the formula of the
reflection coefficient in terms of the load impedance and characteristic impedance. The value of

VSWR can be read as VSWR =15.2 (the value of r displayed on the scale of the chart), being the

value of r referring to the constant-r circle passing through P’ (as explained earlier while

describing the features of constant-r circle). This value of VSWR also agrees to that calculated 65
earlier using the formula of the VSWR in terms of the magnitude of the reflection coefficient.



Location of the load impedance of a transmission line on Smith chart

ZZ .
Z,=—=r+jx

(load impedance normalised with respect to characteristic resistance expressed in terms of its real
part r and imaginary part x)

Locate the point of intersection between constant-r and constant-x circles now that the values of
r and x have been identified.

We can read the values of r on u axis and those of x
on the periphery of the outermost constant-r circle.

In the accompanying figure, the point P being the
intersection between constant r = 0.5 and constant x =
2 circles, can be made to represent the normalised
load impedance z, = Z/R,= 0.5 + j2. Therefore, P can
be made to represent the load impedance of a line of
characteristic resistance 50 Q (typical):

Z = Ry(0.5 + j2) = 50 x (0.5 + j2) = 25 + j100 Q.

constant- x circles
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Representation of purely resistive, purely inductive and purely capacitive, short-circuit, open-
circuit, and matched loads:

Load at terminating end Representing point on chart
Purely resistive A (typical) )
Purely inductive B (typical) B e
Purely capacitive C (typical) i .
Short circuit Psc o K e
Open circuit Poc o
matched O

Explanation:

(i) For purely resistive load, x = 0 and the point A lies on u axis which coincides with x = 0 line (see
constant-x circle features discussed earlier).

(i) For purely inductive load, r = 0 and the point B lies on constant r = O circle (outermost constant-r
circle) such that constant-x circle referring to a positive value of x passes through B.
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(iii) For purely capacitive load too, r = 0 and the point C lies
on constant r = 0 circle (outermost constant-r circle) such
that constant-x circle referring to a negative value of x
passes through C.

=0 circle

(iv) For the line terminated in a short circuit, r=0and x =0
and the point P4 lies on the extreme left end point on u
axis.

y >

(v) For the line terminated in an open circuit, r = o and x = o Psc . po”

and the point Py lies on the extreme right end point on u

axis. (We recall the constant-r and constant-x circle

features that the constant r = 0 and the constant r = « C
circles pass through the extreme left and right points of

the real u axis respectively; and also that in the limit x =

0 circle becomes a straight line coinciding with u axis

and that constant-x = oo circle shrinks to the the extreme

right point on u axis).

(vi) For matched load [I;|=0 and the point O is the origin u =
0, v = 0, which is also the centre of constant [[}| circles.
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Location of the input impedance of a transmission line on Smith chart

_ Aexp(yl)+ Bexp(—yl)

/. = (input impedance)

in 0 A eXp(}/ l) - B eXp(_7/ l) (recalled)

l <—— Putting y = jg for a lossless line

= Zi” — Aexp(jﬂl) +Bexp(—j,6’l) (input impedance normalised with respect
Z, Aexp(jB!l)—Bexp(—jf!) tocharacteristicimpedance)

) Dividing the numerator and denominator of the right hand side by
A exp(jfl) and remembering B/A =T,

B .
T ePC2IBD L exp-281)
l—iexp(—2j,b’l) 1-T, exp(-2j81)

Z.

m

l‘— E :‘I‘Z‘exp(jé?) (recalled)

. 1+‘F,‘exp(j9)exp(—j2,81) _ 1+‘F,‘expj(0—2ﬂl)
" "1 exp(j@)exp(—j21)  1-[E exp j(0-2/1)
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1+|F exp (6 -281) 1+|T; exp(j6)
= : , _ (recalled)
" T1-[Efexp i@ —2p1) eV 1= [n[exp(i0)

(input impedance) (load impedance)

l l

Impedance at a distance / from_the load end) Impedance at the load end

Two expressions are identical but for the phase factor exp (—j4).

We had earlier showed how to locate the point P, say, to represent the normalised load
impedance z,.

Let & be the angle of P measured from u axis (¢ = 0) moving ‘anticlockwise’ around the
constant-|r;| circle.

Now, we have to move from P through angle 24/ ‘clockwise’ to reach a new point representing
the impedance of the line at a distance / from the load end, which is the same as the input
impedance of a line of length /.

The values of r and x referring to the constant-r and constant-x circles passing through this
new point give the real and imaginary parts of the input impedance z, normalised with
respect to characteristic resistance R,,.

We can then obtain the input impedance Z;,, by multiplying z;, by R,.

The above method of finding the input impedance of a transmission line using
Smith chart has been further illustrated in an example to follow.
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Note on wavelength scale displayed around the periphery of
the outermost constant-r circle

[=pA

4
B=2rx/4 — 2Bl=@r/ )] — 2pl=4r/A)] =4

|

l=pl=1/2 ——
p=1/2 -~

N 2pl—dmp =27 ——

v

* One rotation through an angle 2z round the periphery of the outermost
constant-r circle (constant r = 0 circle) of the chart corresponds to the length of
the transmission line of half wavelength (1/2).

* The distance in wavelengths is indicated on the periphery of the outermost
constant-r circle.

* The extreme left and right points of the circle on the real u axis of the chart
respectively refer to 0 and 0.25 times the wavelength on the distance scale of
the length of the transmission line.
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Let us retake, however now using Smith chart, the problem of finding the input impedance
of a 3-cm long lossless transmission line of characteristic resistance 50 Q, which operates
at 3.2 GHz and is terminated in load impedance Z, = 25-j15 Q.

Z,=50Q ]
[=3cm _
f=3.2GHz=3.2x10" Hz - toven)
Z,=25-j15Q

z,=2,1Z,=7,/R,= (25— j15)/50 =0.5— j0.3

v

A=c/ f=(3x10")/(3.2x10")=9.375 cm
Length of the line in number of wavelengths — [/ 41 =3/9.375=0.32

* Locate the point A of intersection between the constant r= 0.5 and constant x = 0.3 circles.

« Move 0.324 (wavelengths) clockwise towards generator around the constant- [[| circle through the
point A to reach the point B. Identify the constant-r and constant-x circles passing through the point
B and note that these circles are assigned the values: r= 2.2 and x = - 0.3 respectively.

|
z2,(=2,12))=22-j03 — 7 =(2.2-;0.3)(Z,)=(2.2-;j0.3)(50) =110 — j15 Q

72

The value so obtained by Smith chart is very close to that calculated earlier using formulae.



7\
K—o—>
L

A closed-ended rectangular waveguide resonator (axbx/), which is a rectangular waveguide
of broad dimension a and narrow dimension b and whose length is / and which has six
conducting walls locatedat x=0and x=a; y=0and y=b; and z=0 and z =I.
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Let us use the theory of transmission line to the rectangular waveguide with both of its ends
closed by conducting walls to form a closed-ended waveguide resonator.

Z. = jZ,tan Bl (recalled) « Z. =0
(input impedance of the line (input impedance of the line if its
short-circuited at the load end) input end is short-circuited)
l 2 2
mri ni
tanfl=0 — pBl=pr (p=12,3,...) @, =cC (7) +(7j

(closed-ended resonator)
(Waveguide cutoff frequency)

\ / (See Chapter 9)

The length / of the _IB A —w 2 _ —() Dispersion relation for both TE
waveguide resonates at ¢ and TM modes

angular frequency o, l

\ T ? mi ? niw ?
o’ - Pric [ 22) 4 221 | =0
[ a b
l p is the mode number in
2 2 272 addition to m and n
mi niw pr /
O =\|— | t|— | t| C
a b [

(angular resonant frequency of closed-ended rectangular

waveguide resonator) 74



We can similarly use the theory of transmission line to the rectangular waveguide with both of
its ends open to form an open-ended waveguide resonator.

N
I
8

Z, =—jZ,cotfl (recalled)

(input impedance of the line
open-ended at the load end)

l

cotfl =

l

tanfl=0 — Pl=pr (p=1,2,3,...) — Condition identical with that obtained
(open-ended resonator) for closed-ended resonator

) Following the same steps as taken for closed-ended rectangular waveguide

resonator
5 ) 5,12
w = mr + nr + P C —, Expression identical to that obtained
: a b [ for closed-ended resonator

(angular resonant frequency of open-ended rectangular
waveguide resonator)
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In an illustrative example let us find the resonant frequency of a rectangular cavity which
has the dimensions 3 cm (broad), 2 cm (nharrow) and 5 cm (linear) and which is excited in
the mode TE,,.

m=1,n=0, p=1(given)

A

«<—— a=3cm,b=2cm,/=5cm (given)

f.= {(@) (@)} x3x10% Hz

l

f.=58.3x10°Hz = 5.83 x10° Hz = 5.83 GHz

1/2 l 2 2 27712
e R (IR G
"2 2\a’ 12 ' a b [
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@ wawa;wiak 2esondlor

A standing wave is formed in a waveguide resonator due to the combination of forward and
backward waves caused by reflection from the conducting walls perpendicular to axial z direction.

Axial magnetic field in a rectangular waveguide
excited in TE,, mode (recalled from Chapter 9)
(representing only the forward wave propagating
along 2)

H. :Hzocoszxexpj(a)t—ﬁz) —
a

(recalled)

D HZ0 =S (symbol for field amplitude H,, changed so for the sake of
convenience)

<—  Keeping understood the time dependence exp(jwt)

v

T
H_=Sexp(—jfz)co —x] (S standing for the field amplitude of the forward wave)
a

(forward wave)

Similarly for a backward wave: H_= S"exp(jpf Z)CO{Z xj
a

(S’ standing for the field amplitude of the backward wave)

Combining the contribution of the forward and backward waves:

H, =[Sexp(—-jfz))+ S’em(jﬂz)]cos(zxj
a 77



H_=[Sexp(—jfz)+S exp(jf z)]cos(Z xj (rewritten)
a

T20: Thank you! I

Unit vector at the conducting surface
n directed from the conducting wall to
dielectric/free-space medium

Q)
Il

We can establish a relation between
S and S’ with the help of
electromagnetic boundary condition
at the conductingwallatz=0

» a xE, =0

E’ _ Electric field vector in dielectric/free-
2 space medium
Zln — aZ
_ Jjou, OH, E,=Ea,
y k2 _IBZ ax T
(relation recalled from At the waveguide wall z=0
Chapter 9)
OH
=0 (z=0) —— E| =0
ox #=0

(for all values of x)

—

(for all values of x)

(electromagnetic boundary condition recalled
(see Chapters 7 and 9) at the interface
between conducting and dielectric/free-space
media)

a xXa =—a

z y X

«—

/
axEa =0 (z=0)

l

—ak, =0 (z=0)

78



H_=[Sexp(—jfz)+S exp(jf z)]cos(z xj (rewritten)
a

|

OH T .

Y4

Oox a

= ——smzx[S exp(—jBz)+S'exp(jBz)] —
a

v

exp(xj@)=cosp+ jsing

(trigonometrical relation)

oH, =0 (z=0) (recalled)
X

(for all values of x)

l «— Inviewof z=0

S'=-S «—— S+5=0
}
H._ =[Sexp(~jB2)+S' exp(jﬂz)]co{z xj
a
}

H. = S[exp(-jf2) —exp(jﬂz)]co{f xj
l

H,=-2;S
H. ZHOCO{ijSin,BZ ’ /
a
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H. :Hocoingsinﬂz (rewritten) , OH. _ ~H,ZsinZ xsin Bz

ox a a
_ T O, (7T jou, OH
E =—— H,sin| —x |sin Sz — E = n 2
Y oooakr=-p (a j p VK- B ox
A ) ) 1/2
k = 43 «— kc - (m—ﬂ-j +(ﬂj — m=Ln=0 (TE4o mode)
¢ a a b
K -p =k’
Boundary condition at the conducting
v k=B =(7/a) wallatz=/

|

=0

z=l

E

y

E, :_]a);toa H, sin(%xjsinﬂzexp(ja)t)

l (for all values of x)
snfl=0 — PBl=pr (p=1,2,3,..))
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smpBl=0 — pBl=pr (p=1,2,3,...) (rewritten)

The condition exactly agrees to what has been
derived earlier using transmission line theory

P (p=1,2,3,. — f[= 27z/ﬂ,g (phase propagation 4 in
terms of guide

wavelength 4,)
A
l:p7g (p=1,2,3,....)

(length of the resonator excited in

ﬂ:% (p=1,2,3,....) I=

TE o, mode)
v l
H. =Hocos(£xjsinﬁz E, =7 ’uoaHosm(—xjsm,Bz
l a T a
H, :Hocos(z jsm(pﬂ )z E, - S H, sin(ﬂ jsm( )z
a [ T a

(TE 4o, mode) (TE4o, mode) 81



g T

l

oE '
y _ JOHA pﬂ-Ho Sin(ﬂ

0z T a

—X

E =— J O, A H, Sm(ﬁ xjsm(¥) z (TE4, mode) (rewritten)
a

i

<«—— Substituting in the following Maxwell’s
equation recalled from Chapter 9

o,
YA

Putting, in the field expressions
deduced, p = 1 and invoking time
dependence: exp(jwt)

H = —pﬁHO sin(zxjco{p—” Zj
[ a [

(TE4op mode)

~. \

H =H, co{zxjsin(§zJexp(ja)t)
a

E, =- ]a)j,t;oa H, sin(%xjsin(%z)exp(ja)t)

'd

H, = —%HO sin(zxjcos(%zjexp(ja)t)
a

(TE4p1-mode field expressions of a 82
rectangular waveguide resonator)
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Quality factor of a
waveguide resonator

Energy stored (time-averaged) in electric field:

N\

1 - T o). (7 :
W.=—¢&,3E.Edtr (static electric field energy) H. =H, CO{_ xjsm(T Zj exp(jwt)
2 , (recalled from Chapter 8) a
E =- ]a);z;()a H, sin(%x)sin(%zjexp(ja)t)
<— Time averaging for
time-varying fields H = _?Ho sin(z xjco{% Z) exp(jwt)
v a

1
WE:E

(TE4oy mode)

Vo

1 2
- 5 €0 (i Ey )time'averagedf

- ] _ ~
0 (§ EE )time-averagedz- — 5 80 (§ Eyay 'Eyay )time-averagedz-
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1
W, = 5 &, (§ Eyz)me_averaged T (rewritten)

AN
I dt = dxdydz

-

E =19 H, sin(zxjsin(%zjexp(ja)t) (TE 4o, mode)

4 T a Y

<— An extra factor of 1/2 introduced for time averaging

Y
28 a)2a2 a T b / T /// /
W, = o %o . Hozjsinz(—x)dxjdyfsmz(szdz %
0 0 0

47 a 2 7 :
\Ilj s /
: 1 cos2 d
<+— Making use of relation: Slnzgazz— > P < a0
<— Evaluating the integral
¢ T a Z T [
<+— Making use of relations: ISIH —X |dx =—, jdy=b and Ismz —X |dx =—
) a 2 - p a 2
— =21
1

W, = Zﬂ0250a3blf2Ho2 (TE;; mode)

(average energy stored in electric field) 84



Energy stored (time-averaged) in magnetic field:

W, —,uO§H Hdr (static magnetic field H_ =H, CO{Z xj Sln(Z Zj exp(jwt)
energy) (recalled a [
from Chapter 8) DU - -
E, = J Ot H, sin(—x)sin(—zjexp(ja)t)
<+— Time averaging for time-varying fields 7T d [
! H. :—%HO sin(zxjco{%z)exp(ja)t)
a
1 - . - ~
WB - (E ,Llof(HxClx + Hyay) ) (Hxax + Hyay)dz-)time-average (TE101 mode)

1 . ~ ~ .
= (5 ﬂ0§(Hxax + Hyay) ) (Hxax + Hyay)dz-)time—average

= l IUO § (Hx2 + sz )time—averagedz- <
2 ™~
\ g dt =dxdydz

<— An extra factor of 1/2 introduced for time averaging

1 Na* e . (7 NG ¢ o C o
WB—Z,UOHO Kl—zj}[sm (;xjdx!dyz[cos 72 Z+£COS ;x dx_!dyz‘)‘sm 72 dz

85
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1 Aa® e . o7 NG ¢ o7 C e
/8 —Z,uOH0 Kl—zl[sm (ijdx_([dy_([cos 72 z+£cos ;x dx_([dy_([sm 72 dz
(rewritten) (TE101 mode)

<+— Making use of relation: sin’ Q= 5— 5y COoS @ =

a b / [
«— Mak|ng use of relations: jsm2(£ Xde = %’ Idy = b, jCOSz(Z Xde = é, Ismz(z Xde = é
0 0 0

v

a’ 1
WB:f_gabl([_z—i_leoz WE:_ﬂ0280a3blf2HO2 «— f:f
(recalled)

l W, = i u, ' e,a’bl £°H,’

2 AN
a 1/2 1/2
16 Z r 2 Cl2 12 2(/”080)1/2 Cl2 12
(average energies stored in electric
and magnetic fields are equal) ! (resonant frequency of TE,,; mode)
[ (recalled)

2
Ko a 2
w,="0apll 11|l 86
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Total energy (time-averaged) stored in a resonant cavity

2

W,=W,= '1u—g abl(l + Cll—szoz (rewritten)

Y,
Y,
Y/

2 Z

W =W, +W,=2W, =2W, =%abl 1+‘;—2JH02

(total time-averaged energy stored in resonant cavity) -

X
Power dissipated in the conducting walls of a resonant cavity

]
iR
A\

In finding the power dissipated in the conducting walls of a rectangular waveguide resonator,
we can use the same approach as followed in finding the power dissipated in the conducting
walls of a rectangular waveguide in Chapter 9.

1 - Tk — r 7 T

PLA_ERSJS.JS anXHZ_JS.. Zln ) =le (I‘lght Wall)
(boundary condition hx=0 -

(power loss in a at a conducting wall) Ay, = Y9 (left wall)
conducting wall in terms a,| _,=a, (bottom wall)
of the surface current H. = magnetic field inside [ G ’ =—G. (top wall)
density developed at > waveguide nly=p =~ "4y \1OP
surface of the a,| _,=a, (front wall)
conducting .waII and a, = unit vect.or at the q =—a_ (back wall)
surface resistance) conducting wall Mz=l z y
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3N

T .| T .
Magnetic field has two . . =H, CO{_ xjsm(7 Zj exp(jwt)
components a
[O)IN?) N/ (7 .
~ | E, =- SOl H, sm(—x)sm(— z) exp(jwt) (recalled)
H,=Ha, +H.a, 7 a !
— - a .| T T .
axH,=J H. :—7Hosm(—cho{72jexp(]a}t)
n S a
(boundary _ _ ’
condition) (TE 94-mode field expressions of a
l rectangular waveguide resonator)
J. _ =ax(Hd-+Ha)=-Ha, (right wall)
J| =-ax(Hd +Hd)=H.a left wall
lx=a x ( X z Z) 2y ( ) (wall surface current
= _ - - _ _ densities in terms of
e =4 x(H.a,+H.a,)=-H.a +H.a, (bottomwall)| a5netic field
- © components)
|, = —a,x(H.a +H.a)=Ha —H.a_ (topwall)
y:
), =% (Ha.+Ha)=H.a, (front wall)
J. =-ax(Ha +Ha)=-H,a, (backwall)
zZ= J
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H =H, sin(%zjexp(ja)t)
H. =0

H =-H, sin(%zjexp(ja)t)
H. =0

H. :Hocos[gx)sin %zjexp(ja)t)

_a

AN

H_ = lHosin(zx cos(%zjexp(ja)t)
a

H =H, co{zx)sin d
a [

—zj exp(jwt)

H

a

H._ =0

H. :—%HO sin(zxjexp(ja)t)
a

H.=0

H = %HO sin(zxjexp(ja)t)
a

-

-

L= —%HO sin(zx cos(%zjexp(ja)t)

(right wall; x = 0)

(leftwall; x = a)

(bottomwall; y =0)

(topwall; y =b)

(frontwall; z = 0)

(backwall;z =1)

(magnetic field
components to be put
in the expressions for
surface current
densities at resonator
walls)
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We have obtained immediately above

(i) the expressions for the magnetic field components and
(i) the expressions for the surface current densities in terms of magnetic field components

both at each of the waveguide resonator walls.

We can substitute (i) in to (ii).

js ——H sin —zjexp(]a)t)a

js =—-H, sm(—zjexp(]a)t)a

js -H (f )co{—zjexp(]a)t)a
y=0 ] a

+H cos(E xj sm(T Zj exp(jot)a,
a

js =—EHO sin(zxjcos(zzjexp(ja)t)ﬁz
y=b [ a [
-H, cos(Z xjsin(% zj exp(jwt)a,
a
js :—EHO sin(zx)exp(ja)t)c?y
z=0 [ a

J| = —%HO sin(%xjexp(jcot)c‘iy

z=l

(right wall)

(left wall)

(bottom wall)

(top wall)

(front wall)

(backwall)

(wall surface current
densities to be used
later for deriving the
expressions for power
lost per unit area at
resonator walls)

Let us next proceed to
derive the expressions
for power loss per unit
area at resonator walls.
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In order to derive the expressions for power loss or dissipated per unit area at resonator walls,
let us recall the expression for power loss per unit area at a conducting surface P, , in terms of
the surface resistance and surface current density deduced in Chapter 8 and already used in
Chapter 9 with respect to waveguide walls.

l

1 - Tk
P,= ERSJS -J . (recalled from Chapter 9)

The expression for J* can be obtained from that of J_ already obtained earlier simply by
replacing the factor exp(jot) with exp—(jaf). Hence we obtain

(J,-J))| _ (right wall) = (J, - J))
= HO2 sinz(% Zj

(J,-J))

~ (left wall)

(7 .7" (expressions to be
y=0 (bottom wall) = (JS /s )‘ y=b (top wall) substituted in the

5 expressions for power
| a 2 .o T of T 2 o T .o T loss per unit area at
—(7j H, sm (—xjcos (72)+H0 COS (—xjsm (7zj the surfaces of the

a a :
waveguide walls)

~N—

(J,-J)

2
(s
/ a ] 91

 (front wall) = J,-J) _ (back wall)




—

Substitute the expression for JS 'JS already derived in the expression for power loss per unit area

-«—

—

RSjs ) ']S>l<

(recalled)

B , (right wall) = B, (left wall)
= %RSHO2 sinz(%zj
P, (bottom wall) = B , (top wall)

| 2 (power loss per unit
a i T T T i T
=— R (7j H, sz(— xjcos2 (7 zj +H," cos’ (— xjsm2(7 z) area at resonator

9) a a walls)

B (front wall) = £, , (back wall)

2
= lR{ﬁj H, sinz(zxj
2 [ a ]

Next, we are going to use these expressions for power loss per unit area at the surfaces
of the resonator walls to find the power loss over the entire wall surfaces.

V

92



Let us now use these expressions for power loss per unit area P, at the surfaces of the
resonator walls to find the power loss over the entire wall surfaces.

For this purpose, with reference to a resonator wall, with the help the expression for P, , let us
find the power loss over an infinitesimal area of the wall and then integrate it to find the power

loss P, over the entire area of the wall.

P, (right wall) = %RSHOZ sinz(% zj

P, (right wall) = [P, (right wall)dydz

rightwall

|

b1
P (right wall) =~ R.H* [ay[ sinz(z Z)dz
2 S R
<— Making use of the relation:
b I - ]
jdy = b,jshﬁ[—x}dx =—
p ) a 2

P (right wall) = ! R H, (b)( j

B (left wall) = LR H sin (’l’ j

-

P (left wal) = [ B, (left wall)dydz

rightwall

|

b 1
P, (left wall) = %RSHOZ [ay| sinz(% z]dz
0 0
<— Making use of the relation:
f l T [
jdy = b,jshﬁ[—x}dx =—
p ) a 2

P, (left wall) = %RSHOZ(b)(éj
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£ (top wall) =

2
lRS Sl H sin?| Zx|cos?| 2z
2 [ a [

i)

B (top wall) = IPL A (top wall)dxdz

l bottom wall

P, (top wall) =

2a /
lRSHO2 (gj jsinz(zxjdx Jcos{zz}z’z
2 l) a ) [
a /
+ J‘cosz(z xjdxj sinz(z Zjdz}
0 a 0 l

<+— Using integral values as done earlier

B (topwall) = %RSH ) (C;j(;j{(?j + 1}

B, , (bottom wall) =

2
lRS Sl H sin?| Zx|cos?| 2z
2 [ a [

P (bottom wall) = j B (bottom wall)dxdz

l bottom wall

P, (bottom wall) =

24 /
lRSHO2 (gj jsinz(zxjdx Jcos{zz}z’z
2 l) a [

0

a /
+J‘cos2 zx a’xJ.sin2 zZ dz
0 a 0 l

<+<—Using integral values as done earlier

P (bottom wall) = %RSH ) (CIZJLQJKCIZJ + 1}
4



2
P (front wall) = %R{%) H, sinz(z xj

a

l

B (front wall) = J- B (front wall)dxdy

frontwall

a

2a b
P(frontwall)— RH (lj J-smz(zxjdxjdy
0

0

<+<— Using integral values as done earlier

B (front wall) = %RSH 02(%) (%)(b)

2
P, (back wall) = lRS(ﬁj H;} sinz(f xj
2 [ a
P (back wall) = [P, (back wall)dxdy

frontwall

.

R, (backwall) = LroH, (zj | sinz(zxjdx [ay

0 a 0
<+<—Using integral values as done earlier

P, (back wall) = lR H, (1) Gj(b)

A

y

P =P (night wall) + B, (left wall) + £ (topwall) + £ (bottomwall) + P, (front wall) + P, (back wall)

(power losses in all the six walls of a rectangular waveguide resonator summed up)

|

2
a
PL - RSHoz(Ej( ]

1 ] b 1
+§ + ;4—5 (TE4p; mode) 95



@’ Y A KA LI
W:WE+WB:2WE:2WB:%abl(1+Z_2jH02 })L_RSH() (2)(1(1+2 +/ a+2

(total time-averaged energy stored in (power losses in all the six walls of a
resonant cavity) rectangular waveguide resonator
summed up)

Let us see how these two expressions
derived for a rectangular waveguide
resonator excited in TE101 mode can be
used to obtain an expression for the
quality factor Q of the resonator defined
as follows.

W = time-averaged —> | «—— W|. = energy lost per cycle, that
=w/27xw .. . \
is, in the wave time period

energy stored

T=2rw
0-22—"— — w,| l _pr=p 2~
VVL‘Tza)/Zﬂ' Hramje S @
l I
(0
Q|=2x Vgﬂ =a)K
pm| h %



2 2
H, a 2 oflaa (b 1 b 1
3 " ( l2j 0 LR (2j(1(1+2j”(a+2jj
(recalled) \ / (recalled)

O|=2r Vgﬂ =6e)K
p2| R,
4
Ky a’
/4 [
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2
‘éﬂ abl(l + ‘;2]
(TE4o4 mode) (re-written)

Q :a)Z = Q) 2
P aa (b 1 b 1
R = | —|—+= |+ —+= 1n
2N\ 2 a 2 7 o 11 1
= =—|—+—=| ¢
"2 2\a® I
(TE4o4 mode) (recalled)

<— Interpreted at resonant frequency @ = @, = 2iy’r

. k c=1/(t45,)"
v lg’abl(l+lzJ »
T I 1
0)},:272'](;,_ )1/2( +l—2j

5 +—
LR
2N 1\ 2 a 2
2
" o bl 142
r (1 1 8 !
Q 1/2 +
RS( b

(L&)
|

0=

1/2

— N =(/&)

72770 Zb(az +12)3/2
4R, al(a® +17)+2b(a’ +1)
(TE, oy mode)

(quality factor of a rectangular waveguide resonator)



2b(a? +12)"? 1 1/2 1/2
0="1 2(2 )3 _| g - _ [ Ay s |1 Jfr:”r:li+l )
4R, al(a” +1")+2b(a” +1") oo o V]I 27 2\a® I°

(TE; o1 mode) (rewritten) '\ / (TE, o1 mode) (recalled)

(both recalled from
Chapter 6 for a
good conductor at
relatively high
frequencies: f=1,)

v

The quality factor of a waveguide resonator depends on the dimensions of the
resonator and on the conductivity of the material used in making it.

Loaded quality factor

In an actual application, some part of energy stored in a cavity is coupled out from the cavity to an external
load and the cavity thereby becomes loaded. For such a loaded cavity, the power lost from the loaded
cavity P, 15adeq CONSists of

(i) the ohmic power loss P, ... due the finite conductivity of the material making the cavity and

(i) the power P, |,.4e4 that couples out from the cavity to the load.

l

PL,loaded - })L, ohmic + PL

,ext
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A

O= a)Z (recalled)
L

PL,loaded = PL’OhmiC + PL,ext (rewritten)

| |

N\

oW oW oW P oW (quality factors: unloaded
— + L, ohmic Q Qunloaded’ external Qext and
Qloaded Qunloaded Qext unloaded loaded Qloaded related to
oW ohmic power 10ss P o mic
Loext — .~ ( power coupled out to the
Qext external load P, .,; and
1 1 1 oW total power loss P, |y,4eq Of
= + P 1wsea=—— | theloaded cavity,
Qloaded Qunloaded Qext ’ Qloaded J respectively

(relation between the loaded, unloaded
and external quality factors)

Frequency response of equivalent impedance of the resonator

The waveguide resonator may be represented by a resonant circuit comprising an inductor of inductance
L having reactance jwl, a capacitor of capacitance C having reactance 1/(joC) , and a resistor of
resistance R, all in parallel.

In what follows next, let us find the frequency response of the impedance Z,, of the L, C, R parallel
resonant circuit equivalent to the waveguide resonator and hence relate its quality factor to the resonant
frequency and the bandwidth A of the resonator.

W = l CV/? (total energy W stored in the circuit, taken here as the energy in the capacitor which is

2 transferred back and forth between the inductor and the capacitor during each cycle)
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| ) V?  (power loss in the resistor of the
W =PCR — W= ECV — b= g Parallel equivalent circuit)

l (recalled)

@) a)K (recalled)
B,

«—

1 1

0= a)rCR — (C= > +— O, =-———- (resonantangular

l LCUr (LC) frequency of the circuit)
Q — R An expression that is going to be put in the expression for the

w L impedance Z,, of the equivalent L, C, R parallel resonant circuit
l 1 1 11 T
Z, joL 1 R

R _ 0 joC cl
L = L3 TR

‘ <— After a little algebra

R
> Ze =
q ) )
1- jO“ - (1-w’LC) l
(0
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R 1

Lo, = p (rewritten) <«—— ©, =——7
1- 0% (1-0*LC) (LC)
)
Zeq = R > Ze = R
e q Ow, [
a)l" a)l"

At resonance o = ar, Z,, = R and we can normalize
Z,, with respect to R that is its value at resonance.

l

Lo, 1
R, Q@ra)o-o)
@ 0

r
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z., 1
eq _ 1 , R S/
R, 0@ 0)0-0) T 1+(Q<w+wr><w—wr>]
@ o, @ @,
: Normalized ;
(rewritten) impedance 2
magnitude and its ‘Zﬂ _ 1
2
square R . Q (0+0 ) 0-0)
0, o, )

Impedance magnitude and voltage across the circuit

* maximum at resonance

» decreases both below and above resonance.

Circuit power is proportional to the square of voltage —— Circuit power is proportional
across the circuit > to the square of impedance

Voltage across the circuit is proportional to impedance —

2 v

Z 1 1
Corresponds to half the maximum <«— ‘i = > =
power at resonant frequency o, R . (Q (w+w. ) o— a)r)J 2

@ Q,

r
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1 1

1+

> = — (corresponding to half the maximum
(Q (w+o.)(w—-o. )j 2 power at resonant frequency )

@ @

7

(recalled)

We expect two solutions @, and @, of around the resonant w. A

w=0wm =wm +Aw (firstsolution) N

|

W, = o

7

— o+t =20

v a)l_a)rzAC())

2
4Q2 (Aa))2 —1 (from first solution)
a)l"

w=w,=®.—Aw (second solution)

r

l

a)2 za)r

‘ o, +0 ~20 ;¢

A

4

4]

r

0, — 0, ~—A®|

y

2
5 (Aa))2 =] (from second solution) (relation identical to that obtained taking from first solution

=0 +Aw
(Aw << w)
W, =0 —Aw
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(rewritten)
@,l
0= ., Interpreting 24w as the angular frequency bandwidth - 0 ,
2Aw angular frequencybandwidth
In terms of circular frequency or simply frequency
frequencybandwidth

Let us take an illustrative example of finding the dimension of a cubical cavity made of
copper (c = 5.8 x 108 mho/m) excited in the TE,;; mode so that it resonates at 15 GHz.
Calculate also its quality factor and bandwidth.

c=3x10%m/s (given) m=1,n=0,p=1and a=b=/(given)
l l mrY (nzY pr 1"
1 (PR B = (—j (—j (_j ’
77 /= Jor a a b [
! :
f. =15 GHz—15><109\HZ' a(=b=1[)= L1 c= [ 3x10 =1.414%x107m

J2 . J215x10°

(given) 105




a=b=1/(given)
o, 2a(a2+a2)3/2 | o, 2b(a2+12)3/2
0= 4R, aa(d’+a’)+2a(d’ +a°) 0= 4R, al(a® +1*)+2b(a’ +1)
(TE4oy mode)

f=f =15GHz =15x10"Hz (given)

\ 9 -7
—— Simplfis o o 7 fu, :\/3.143><15><10 xArx107 Lo s
O

’ 5.8x10’
/ (see Chapter 6 for the expression for R, used)
m, 2a(a’ +a*)’? mm, 3.143x377
Q — > 3 3 3 = = ) == 8756
4R, aa(a’ +a’)+2a(a@’ +a’) 3J2R;, 3x1.414x3.19x10
_ f,
frequencybandwidth
f = ﬁ — 15 CH_IZ = 15 X 109 HZ (given) (reca"ed)

,, |

9
frequencybandwidth = /s = 15x10

8756

=1.713x10°Hz =1.713MHz
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Summarising Ptz

v Waveguide resonator at a defined resonant frequency can be made out of an
appropriately chosen length of a waveguide with its both ends either closed by a
conductor or kept open.

\ Transmission line theory is an easy approach of treating a waveguide resonator.
v\ Basic concepts of transmission line theory have been developed such as
¢ distributed transmission line parameters;
¢ telegrapher’s equation;
¢ condition for distortionless transmission;
¢ input impedance of the line terminated in a load impedance;
¢ characteristic impedance of the line;
¢ voltage standing-wave ratio (VSWR) of the line;
¢ Impedance matching such as in Radome for the protection of an antenna
and branch-type radar duplexer of a radar system; and
¢ Smith chart: theory and application to transmission line problems to make

them simpler.
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\ Resonator length has been found by transmission line theory as an integral
multiple of half the guide wavelength for both closed-ended and open-ended
resonators.

\ Resonant frequency of the waveguide resonator can be found with the help of
transmission line theory using the dispersion relation of the waveguide.

v Field theory can be applied to treat a waveguide resonator as an alternative to
transmission line theory.

V Field solutions and electromagnetic boundary conditions typically for a
rectangular waveguide closed-ended resonator has yielded

(i) the same resonator length as predicted by the transmission line theory and

(i) an additional mode number p of the waveguide resonator, to be read with
reference to TE,,-mode excitation of the waveguide as TE,;, mode of the
resonator (which may be generalised as TE,,,, mode of the resonator with
reference to TE,, -mode excitation of the waveguide).

\ Field solution and relevant electromagnetic boundary conditions can be used to
obtain

(i) the expression for the time-averaged energy stored in electric and
magnetic fields and

(ii) the expression for the power loss in resonator walls.
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\ Expression for the quality factor of a resonator in the TE,,; mode at the
resonant frequency, in terms of the resonator dimensions and the surface
resistance of the conducting material making the resonator, has been derived
with the help of the expressions for the time-averaged energy stored and
power loss in the resonator.

\ Relation between the unloaded quality factor, external quality factor and
loaded quality factor of a cavity has been obtained keeping in view some part
of energy stored in a cavity being coupled out from it to an external load in
practice.

v Quality factor of a cavity resonator may also be expressed in terms of the
resonant frequency and bandwidth of the frequency response of half the value
of square of the ratio of the magnitude of the equivalent impedance of the
resonant circuit comprising an inductor, capacitor and resistor in parallel.

Keaders are moowm;w‘% go %u’ﬂ Wn 0
ofﬁa book /o»b mow%/n'w and more worked-ovt
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