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Engineering Electromagnetics Essentials

Chapter 10

Waveguide resonator: analytic appreciation 

by equivalent transmission-line approach



22

Objective

Topics dealt with

To analyse and characterise waveguide resonators

Transmission line theory as an approach to study waveguide resonators 

Distributed transmission line parameters

Telegrapher’s equations

Distortionless transmission line 

Input impedance of a transmission line terminated in a load impedance

Transmission line theory as applied to a duplexer of a radar system

Transmission line theory as applied to a radome of an antenna

Characteristic impedance of a transmission line

Reflection coefficient and voltage standing wave ratio (VSWR) of a transmission line

Finding the load impedance of a transmission line from the shift of its standing-wave 

pattern when a short replaces the load impedance 
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Theory of Smith chart and its applications to transmission line problems  

Closed-ended resonator analysed by transmission line theory

Cylindrical waveguide 

Inability of a hollow-pipe waveguide to support a TEM mode 

Power flow and power loss in a waveguide 

Power loss per unit area, power loss per unit length and attenuation constant therefrom

Background

Maxwell’s equations (Chapter 5), electromagnetic boundary conditions at 

conductor-dielectric interface (Chapter 7), basic concepts of propagation of 

electromagnetic waves through a waveguide (Chapter 9) and those of 

circuit theory 

3
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Difficulties alleviated by storing energy in a microwave resonator formed out of a designed 

length of a hollow metal-pipe waveguide:

• Closed-ended waveguide resonator 

• Open-ended waveguide resonator

Difficulties of storing microwave energy at microwave frequencies in conventional tank circuit 

consisting of an inductor in parallel with a capacitor:

• Radiative loss due to part sizes becoming comparable to the operating wavelength 

• Increased resistive loss due to skin effect

• Difficulty of fabricating inductors and capacitors due to their tiny sizes   

How to find the length of the waveguide⎯closed-ended or open-ended−that would make it a 

resonator?

We have found this length by treating a waveguide resonator as equivalent to a transmission 

line ⎯an alternative to the field theory approach that uses Maxwell’s equations, wave 

equation, electromagnetic boundary conditions, Poynting theorem, etc.

Therefore, in what follows, we present the fundamentals of transmission line theory (that is in 

vogue for the analysis of a transmission line like a two-wire line or a coaxial cable).
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Distributed transmission line parameters L, C, R and G to represent an infinitesimal length of a 

transmission line:

Series inductance per unit length, L ,of the line accounting for the energy stored in electric field

Shunt capacitance per unit length, C, of the line accounting for the energy stored in electric field

Series resistance per unit length, R, of the line accounting for the power losses in the conductors

Shunt conductance per unit length, G, of the line accounting for the power losses in the dielectric, if 

present in the region between the conductors 

Let us present here the fundamentals of transmission line theory to be used for treating a waveguide 

resonator. It becomes convenient to treat a transmission line with the help of distributed transmission 

line parameters to represent an infinitesimal length of it.

Transmission line theory

By choosing the infinitesimal length of the line z→0, we can treat the individual elements of 

line section of infinitesimal length z as lumped circuit elements and apply the laws of the 

circuit theory such as Kirchoff’s laws for the analysis of the line. 

(See the Note to follow)
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Note: 

In the definition of the distributed line parameters representing a transmission line, the following is 

implied: 

(i)  Effect of the size of a circuit element relative to the operating wavelength is not ignored as could 

be done at low frequencies; 

(ii) Effect of the finite time of travel of signal along the electric circuit is taken into account in the

analysis for frequencies greater than a kilohertz while assigning electrical quantities such as the

voltage, current, resistance, capacitance, etc;

(iii) Due to the transit-time effect, there will be a non-zero reactive drop for a lossless transmission

line even though its resistive voltage drop could be zero;

(iv) Higher the operating frequencies, the manifestation of the transit-time effect in the reactance

effect becomes more pronounced;

(v) Current I and voltage V continuously vary from point to point along the length of the line,

warranting the use of a cascade of individual ‘discrete’ elemental line sections, each of

infinitesimal length z, chosen small compared to the operating wavelength ;

(vi) By choosing z→0, the individual elements of line section of infinitesimal length z of the

distributed transmission line model can be treated as the lumped circuit elements, thereby

allowing the application of the laws of the circuit theory such as Kirchoff’s laws for the analysis of

the line.
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Series resistance due to the finite conductivity of the conductor  used in 

making the transmission line, accounting for ohmic power loss in the 

conductor

Series inductance associated with the magnetic flux due to the current through the 

transmission line that links with the conductors making up the line, which takes 

into account the energy stored in the magnetic field

Shunt capacitance  between the conductors of the transmission line because of the 

existence of an electric field between the conductors insulated by a dielectric medium

Shunt conductance  between the conductors of the transmission line, often referred 

to as leakage conductance or ‘leakance’, which manifests itself because of leakage 

current flowing between the conductors through the insulating dielectric if it is not 

perfect, thus accounting for the dielectric power loss in the insulator 

Representation of an infinitesimal 

length of an element of a 

transmission line by distributed line 

parameters
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Distortionless transmission line

The information or signal that we transmit through a transmission line is composed, in general, 

of a number of frequency components. For distortionless transmission, two conditions need to 

be satisfied: 

(i) all the frequency components constituting the signal should simultaneously reach the same 

receiving point on the line, which also implies that the phase velocity of the wave, vph, 

supported by the line should be constant with frequency, or in other words, the line should be 

‘dispersion-free’ and 

(ii) the attenuation constant  of the line due to line losses, if any, should be the same for all 

the frequency components of the signal. 

Does a lossless transmission line (R = G = 0) satisfy the distortionless condition?
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(general expression for the input impedance of a transmission line which)

Let us next read this general expression for the input impedance the line for a lossless line. 
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Input impedance of a lossless transmission line:
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



+

+

=

Dividing the numerator and denominator each by 
lZ

Putting for an open-ended line =lZ

)cot(
)tan(

1

)tan(

1
000 ljZ

l
jZ

lj
ZZin 


−=−==

(lossless transmission line open-ended at the load end)
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Quarter-wave transformer and its use in a radar duplexer:

ljZZin tan0= (short-circuited lossless transmission line at the load end)










=

=

4

2








l

===== ))(()]
2

tan()]
4

)(
2

tan[(tan 0000 jZjZjZljZZin







(quarter-wave transmission line: l = /4)

(short-circuited lossless quarter-wave transmission line of length l = /4 at the load end)

Thus the input impedance of a short-circuited lossless quarter-wave transmission is 

found to be infinity. 
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)cot(
)tan(

1

)tan(

1
000 ljZ

l
jZ

lj
ZZin 


−=−==

(lossless transmission line open-ended at the load end)










=

=

4

2








l

(quarter-wave transmission line: l = /4)

0)0)(()]
2

cot()]
4

)(
2

cot[(cot 0000 =−=−=−=−= jZjZjZljZZin







(lossless quarter-wave transmission line open-ended at the load end)

Thus the input impedance of a lossless quarter-wave transmission line open-ended at 

the load end is found to be zero. 
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In a radar system, the signal power is sent to a target in pulses and the echo signal is received 

between pulses. 

The duplexer in the radar permits the use of a single antenna in both  transmitting and receiving 

modes of the radar. In the transmitting mode the duplexer allows the transmitter to send signal 

power to the antenna for radiation while protecting the receiver from the transmitted power and, in 

the receiving mode, allows the signal power to be received by the receiver.

In the transmitting mode the duplexer allows the transmitter to send signal power to the 

antenna for radiation while protecting the receiver from the transmitted power

In the receiving mode the duplexer allows the signal power to be received by the receiver. 

Transmission line theory as applied to a duplexer of a radar system 
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Transmit-receive (TR) and anti-transmit-receive 

(ATR) switches (both, typically, gas-discharge 

type) are turned on (by gas ionisation discharge) 

when the radar sends signal power pulses and 

turned off (by gas deionisation) between pulses.

TR and the ATR switches primarily disconnect 

the receiver in the transmitting mode and 

disconnect the transmitter in the receiving mode. 

Branch-type radar duplexer

Branch-type radar duplexer:

TR switch is located toward the antenna end in the branch line 

at a quarter wavelength (/4) distance from the main line the 

antenna end. It is terminated in the receiver.

ATR switch is located toward the transmitter end in the branch 

line at a quarter wavelength (/4) distance from the main line. It 

is separated from TR switch by a distance of /4 measured on 

the main line.
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Input impedance of a short-circuited lossless quarter-wave (/4) transmission is 

infinity. (recalled)

Input impedance of a lossless quarter-wave (/4) transmission line open-ended 

at the load end is zero.  (recalled)  

Transmitting mode:

(i) TR switch turns on and short circuits the 

transmitted thereby preventing it from 

entering the receiver. (ii) Branch line 

containing TR switch with its terminating 

end shorted presents infinite impedance at 

the main line /4 away from it and does not 

impede power flow in the main line to the 

antenna. (Iii) Similarly, ATR switch also 

turns on and presents infinite impedance at 

the main line and does not impede power 

flow in the main line to the antenna (as in (ii) 

above). 

Receiving mode:

(i) ATR switch turns off and makes the branch line containing 

it open ended thereby presenting zero impedance at a point 

/4 away on the main line. (ii) TR switch turns off and 

similarly presents zero impedance at a point on the main line. 

(iii) Received power sees infinite impedance toward the 

transmitter end at a point on the main line where it is 

connected to the branch line containing TR switch since this 

point is /4 distance away from the zero impedance point on 

the main line connected to ATR switch via the branch line 

(see (i) above). (iv) Since received power sees zero 

impedance point toward receiver (as in (i) above) and infinite 

impedance toward transmitter (see (iii) above), and it goes to 

the receiver instead of transmitter taking the lower 

impedance path. 
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Let us exemplify the transmission line theory to determine the thickness of a radome that is used to 

protect an antenna while for this purpose by first appreciating that the input impedance of a half-

wave lossless transmission line is the same as the terminating load impedance of the line and hence 

finding the thickness of a radome, treated as a lossless transmission line, made of a fibre glass of 

dielectric constant 4.9 and taking the operating frequency as 3 GHz.

Transmission line theory as applied to a radome of an antenna

ljZZ

ljZZ
ZZ

l

l
in





tan

tan

0

0
0

+

+
= (recalled) (lossless line)









==

===

=

0tan)tan(

)2/)(/2()/2(

2/







l

ll

l

l
l

in Z
Z

Z
ZZ ==

0

0

(input impedance of a half-wave line treated here as a lossless line becoming equal to the load 

impedance)

From the physical point of view, taking the thickness of the radome as /2 will ensure a path 

difference of the wave reflected from the radome as , thereby making it in anti-phase with the 

incident wave and hence causing the cancellation of the incident and reflected waves resulting in the 

matching of the radome to the incident wave.

Here, l corresponds to radome 

thickness
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ZZ ==

0
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We have found the input impedance of a half-wave line as equal to the load impedance. This 

concept may be used to find the thickness of the radome. In the present context, if we take the 

thickness of the radome treated as a transmission line of length l = /2, then since the load 

impedance is here the free-space intrinsic impedance 0, we obtain

0== lin ZZ

(rewritten)

In the present example

(given)

(input and load ends of the radome each being both a free space medium)

mm 59.222/17.452/ ==

(required thickness of radome)
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
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01.2)3)(375.9/2()/2(
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


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ljZZ

ljZZ
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


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0

0
0

+

+
=

tan2.01))(1525(50

tan2.01))(50(1525
50

jj

jj
Z in

−+

+−
=

Let us further numerically appreciate the problem of finding the input impedance of a 3-cm 

long lossless transmission line of characteristic resistance 50 , which operates at 3.2 GHz 

and is terminated in load impedance Zl = 25-j15 . 

Generator 

of 

frequency 

3.2GHz

50Ω transmission line 

l=3cm

ZL=(25-j15)Ω

Zin

−=  6.135.109 jZin













−=

==

=

=

1525Z

Hz 102.3GHz 2.3

cm 3

 50

9

0

j

f

l

Z

l

(given)

Separating the real and 

imaginary parts

(recalled)
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Characteristic impedance of a transmission line

The characteristic impedance of a transmission line may be thus identified as the input 

impedance of an infinitely long line ( l = ) .

)exp()exp(

)exp()exp(
0

lBlA

lBlA
ZZin





−−

−+
= (input impedance) (recalled) 

=l

(infinitely long line) 

00
)exp(

)exp(
Z

lA

lA
Z

I

V
Z

lz

in ===
−= 



(the second term of each of the numerator and the denominator becoming 

significantly less than the first term)  

(infinitely long line) 

Next let us find the value of the input impedance of a transmission line of finite length that is 

terminated in the characteristic impedance. 
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Thus the characteristic impedance of a transmission line may be identified as the terminating load 

impedance of the line that makes the input impedance of the line equal to the load impedance. 

0

0
0

)tanh(

)tanh(

ZlZ

lZZ
ZZ

l

l
in

+

+
=




(input impedance) (recalled)  

0

00

00
0

)tanh(

)tanh(
Z

ZlZ

lZZ
ZZin =

+

+
=





0ZZ l =
2/1

0 








+

+
=

CjG

LjR
Z





(terminating load impedance 

being taken as the 

characteristic impedance Z0) 

(characteristic impedance 

defined earlier in terms of the 

line parameters) 
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Voltage standing wave ratio (VSWR) of a transmission line

)exp()]exp()exp([ tjzjBzjAV  +−=

)exp()]exp()exp([ tjzjBzjAV  +−=

The superposition of the forward and backward waves on a transmission line will give rise to 

standing waves. Consequent to such superposition, the magnitude of the line voltage  

becomes alternately maximum and minimum down the length of the line. We can then define a 

quantity called the voltage standing-wave ratio (VSWR) as the ratio of the magnitude  of the 

line voltage maximum  to the magnitude  of the line voltage minimum as                           .

)exp(]exp)exp([ tjzBzAV  +−=

(recalled)

0= j+= (recalled) (lossless line)

 j= (lossless line)

minmax /VSWR VV=
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)(exp)]2exp(1[ dtjdj
A

V
l  +−+=

)exp(by  Dividing zjA −

)(exp)]2exp(1[ dtjdj
A

B

A

V
 +−+=

)exp()]exp()exp([ tjzjBzjAV  +−= (rewritten)

)exp(]
)exp(

)exp(
1[

)exp(
tj

zjA

zjB

zjA

V






 −
+=

−
)(exp)]2exp(1[ ztjzj

A

B

A

V
 −+=

Rearranging terms

Defining the load end of the line as the reference 

point z = 0 

Normalised potential at a distance z = − d from the load end: 

A

B
l = (recalled)

(reflection coefficient)
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)exp( jll =

)(exp)]2(exp1[ dtjdj
A

V
l  +−+=

)(exp)]2exp(1[ dtjdj
A

V
l  +−+= (rewritten)

(reflection coefficient expressed in terms of 

its magnitude      and phase   )  

)2(exp1 dj
A

V
l  −+=

(magnitude of normalised voltage amplitude)   

In general a complex quantity assuming real 

values for specific values of 

l 

d 2−
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l

AP

)2(exp1 dj
A

V
l  −+= (magnitude of normalised voltage amplitude) (rewritten)   

Can be represented by          in the following vector diagram:

OPAOAP +=

AO has magnitude unity and 

is directed along the 

reference  = 0. 

OP has magnitude       and its 

direction depends on the 

location of the point P on a 

circle of radius          which 

also depends on the 

distance d of P from the 

load.  

lIn order to reach the point PL we can rotate the 

vector          through an angle  from its reference 

 = 0 anticlockwise with its base fixed at O around 

the circle of radius       .

In order to reach the point P we can then rotate the 

same vector around the same circle now clockwise 

from its position PL through an angle 2d.  

OP

l
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l+1 ,....4 ,2 ,02  =− d
APThe length of the vector          representing the magnitude of normalised 

voltage amplitude            takes on maximum value AM =              for                    

AP
,....5 ,3 ,2  =− d

l−1
The length of the vector          representing the magnitude of normalised 

voltage amplitude              takes on minimum value AM/ =               for                    

AV /




= d

AV /

l

l

V

V

−

+
==


=

1

1

MA

AM
VSWR

min

max

 22 =d






2
=

d representing the distance 

between consecutive 

maxima 

= distance between 

consecutive minima

2


= d
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1=l

In a simple illustrative example let us find the reflection coefficient and VSWR of a 

transmission line  for three situations of line  termination: (i) line terminated in a short (ii) 

line open-ended at the load end and (iii) line terminated in characteristic impedance Z0.

(i) Line terminated in a short:

1
0

0

0

0

0

0 −=
+

−
=
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−
=

Z
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ZZ

ZZ

l

l
l ==

−

+
=

−

+
=

0

2

11
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1

1
VSWR

l

l

(ii) Line open-ended at the load end:

1
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1

1

1

1

0

0

0

0

0

0 =
+

−
=


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
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−
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1
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(iii) Line terminated in characteristic impedance:

0=l0
2

0
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0

0 ==
+

−
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−
=
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l
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1
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1
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−

+
=

−
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=

l

l

0=lZ

=lZ

0ZZ l =
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In another example let us calculate the reflection coefficient and the VSWR a transmission line 

of characteristic resistance 50  if it is terminated in complex impedance of 25 + j100 . 

10075

10025

5010025

5010025

j

j

j

j
l

+

+−
=

++

−+
=





=

+=

 50

 10025

0Z

jZl

+==
+

+++−
=

−

−


+

+−
=

36.08.0
)100()75(

10010075100100257525

10075

10075

10075

10025

22
j

jj

j

j

j

j

l

l

877.0)36.0()8.0( 22 =+=l 3.15
877.01
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1

1
VSWR =

−

+
=

−

+
=

l

l

0

0

ZZ

ZZ

l

l
l

+

−
= (given)
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l
A

V
+= 1

max

l
A

V
−= 1

min

)2(exp1 dj
A

V
l  −+=

(magnitude of normalised voltage amplitude)   

,....)4 ,2 ,02  toding(correspon  =− d ,....)5 ,3 ,2   toingcorrespond(  =− d

In yet another illustrative example let us show that, for a transmission line supporting a 

standing wave, the impedance at the voltage maximum is Zmax = (Z0)(VSWR) and the 

impedance at the voltage minimum is Zmin = Zo/ VSWR.

(recalled)
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(recalled)
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(recalled)
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)exp( jll =

0

0

ZZ

ZZ

l

l
l

+

−
=

,....5,3,2  =− d

1
0

0

0

0 −=
+

−
=

Z

Z
l

1)exp( −=j

Finding the load impedance of a transmission line from the study of its standing-wave patterns 

,....5,3,2  =− d

ddd +=−+=  2)(2 ddd =−

(condition for voltage minimum at a point on the line that is distant d from the terminating 

load end)

(reflection coefficient in terms of load impedance recalled)

0=lZ (for a short at the load end)

(reflection coefficient in terms 

of its amplitude and phase )
(for a short at the load end)

(condition for voltage minimum at a point on the line that is distant d/ from the terminating 

load replaced by a short)

In this method, the distance of the first voltage minimum from the load end or alternatively 

the spatial shift  of the voltage minimum of the standing-wave pattern on the length of a 

transmission line when a short replaces the complex impedance at the terminating load end 

is interpreted to find the load impedance. 

( =  for a short at the load end)

(taking the difference between the above two conditions)

 == ;1l

(shift in minima when the terminating load 

is replaced by a short)
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ddd +=−+=  2)(2

ddd =−

d is interpreted as positive when the voltage standing-wave pattern shifts towards the load 

end when a short replaces the complex load at the terminating end (d/<d). 

This also implies that the first voltage extremum from the load end is the voltage minimum at 

a distance d for a complex load, the first voltage minimum however shifting to the location of 

the short when the latter replaces the load (Fig. (a)).      

d is interpreted as negative when the voltage standing-wave pattern shifts towards the 

source end when a short replaces the complex load at the terminating end (d/>d).

This also implies that the first voltage extremum from the load end is the maximum at a 

distance d for a complex load which would shift to the location of the source such that a 

minimum coincides with the short when the latter replaces the load (Fig. (b)). 

(rewritten)

 

(a)

(b)
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 sincos)exp( jj +=

))2sin()2(cos(
1VSWR

1VSWR
djdl +++
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(recalled)

)exp( jll =

d+=  2 (recalled)
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(recalled)

)2sin2(cos
1VSWR

1VSWR
djdl +









+

−
−= 

(recalled)

Put together

We can use the above expression for the load impedance Zl in conjunction with the above 

expression for l to find the load impedance.  

The approach provides the theory of measurement of the load impedance terminating a 

transmission line. The method involves finding experimentally (i) VSWR of the line and (ii) the 

shift d in the minima of the standing-wave pattern which is also equal to the distance of the 

first minimum from the load end. However, it is easier to find the shift in the minima of the 

standing-wave pattern than the distance of the first minimum from the load end.
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4818.02.151sin84.0sin2sin

8763.02.151cos84.0cos2cos

0

0





d

d

 84.0)21.0)(/2)(2(2 ==d

21.0=d

As an illustration, let us find the complex impedance terminating a transmission line of 

characteristic impedance 50  that exhibits VSWR = 1.5 and gives the first extremum of the voltage 

standing-wave pattern as a minimum located at a distance of 0.21 from the load end. 

 

0.21λ

Unknown 

load Zl
Generator

Standing 

wave

50Ω transmission line 

(given)

5.1VSWR =

)4818.08763.0(
15.1

15.1

(recalled)  )2sin2(cos
1VSWR

1VSWR

j

djdl

+−








+

−
−=

+








+

−
−= 
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0
1

1
ZZ

l

l
l

−

+
=096.0175.0 jl −=

−=
−

=
+

−−
=


−

−


+

−
=

+

−
=


+

−
=

−−

−+
=

 9.136.6950
6898.0

1920.09602.0
50

)096.0()825.0(

)096.0825.0)(096.0175.1(

50
096.0825.0

096.0825.0

096.0825.0

096.0175.1
50

096.0825.0

096.0175.1

50
096.0825.0

096.0175.1
50

)096.0175.0(1

)096.0175.0(1

22
j

jjj

j

j

j

j

j

j

j

j

j

j
Zl

)4818.08763.0(
15.1

15.1
jl +−









+

−
−= (rewritten)

Simplifies to

(recalled)
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Smith chart: theory and

application to transmission line problems

Smith chart due to Phillip H. Smith:

• an elegant graphical tool for high frequency circuit applications, is popularly used to solve

transmission line problems

• similar to a slide rule used for carrying out calculations involving addition, subtraction,

multiplication, division, logarithmic and trigonometric functions, etc.

• can be applied to transmission line problems, for instance, to state the value of VSWR from the

value of the complex load impedance terminating a lossless line of known characteristic

resistance and find the input impedance of the line if its length is also given

In what follows, let us outline the theory of Smith chart describing the basic

features of the chart and some of its applications.

Readers can find more applications of the chart in Section 10.1.8 of Chapter 10 of

the book.
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BA

BA

R

Z
z l
l

−

+
==

0

0==GR

Constant- or VSWR circle of Smith chart
l

BA

BA

Z

Zl

−

+
=

0

(recalled)

2/1

0 








+

+
=

CjG

LjR
Z





(Characteristic impedance of 

a line)

(for a lossless line)
2/1

0 








+

+
=

CjG

LjR
Z




say ,0

2/1

0 R
C

L
Z =








=

(Characteristic resistance of 

a lossless line)

(load impedance normalised with 

respect to load resistance)

A

B
A

B

zl
−

+
=

1

1

Dividing the numerator and denominator of 

the right hand side by the same quantity
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A

B
A

B
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+
=

1

1
j

A

B
ll exp==

jvu
jxr

jxr
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==
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1
exp 

1)exp(1

)exp(1 jxr

j

j
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l +
=

−

+





(rewritten)

1

1
exp

++

−+
=

jxr

jxr
jl 

1)(

1)(

)]exp(1[)]exp(1[

)]exp(1[)]exp(1[

++

−+
=

−++

−−+

jxr

jxr

jj

jj

ll

ll





say ,
)exp(1

)exp(1
jxr

j

j
z

l

l

l +=
−

+
=





(reflection coefficient in terms of its 

amplitude and phase)

(reflection coefficient in terms of its 

real part u and imaginary part v)

(recalled)
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jvu
jxr

jxr
jll +=

++

−+
==

1

1
exp  (reflection coefficient in terms of its real 

part u and imaginary part v) (rewritten)

(complex reflection coefficient l plane of Smith 

chart in the domain of         )

A point P on the reflection coefficient l plane of the

Smith chart indicating its magnitude represented by

the length OP and the phase  represented by the angle

between OP and u axis, O being the origin of

coordinates.

The projection of the length OP on the abscissa and

ordinate represent the real part u and the imaginary part

v of the complex reflection coefficient l respectively.

POOP ==l

Can be read as the intercept OP/ with the u axis of a circle of radius              called the 

‘constant- circle’ drawn by the user such that it passes through the point P. The length             

can be read as the magnitude of the reflection coefficient of the line on a horizontal scale 

provided on a commercial Smith chart. The phase  of the reflection coefficient can be read 

on a scale provided on the periphery of the chart.  

Thus Smith chart is generated on the reflection coefficient l plane which can also be referred to as 

the VSWR plane since these two quantities are related as:                                 .                                  

Therefore, the constant- circle can also be referred to as the ‘constant-VSWR 

circle’.                                . 

1l

l

OP=l

l=PO

)1/()1(VSWR ll −+=

l

l



53

jvu
jxr

jxr

jxr

jxr
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−+

−+


++

+−

1

1

1

1

Constant-r and constant-x circles of Smith chart 

ljvu
jxr

jxr
=+=

++

−+

1

1
(normalised load impedance in terms of its real 

part r and imaginary part x) 

jvu
xr

x
j

xr

xr

xr

xjxr

xr

xjxjxrjxrjxrrr

+=
++

+
++

+−
=

++

++−
=

++

++++−−−+

2222

22

22

22

22

22

)1(

2

)1(

1

)1(

21

)1(

1

jxr
R

Z
z l
l +==

0

(real part r and imaginary part x of normalised 

load impedance related to real part u and 

imaginary part v of reflection coefficient) 

Multiplying the left hand side by a quantity 

that is equal to unity having the same 

numerator and denominator

After a little algebra

(defined earlier) 

(recalled) 
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22

22

)1(

1

xr

xr
u

++

+−
=

22)1(

2

xr

x
v

++
=

jvu
xr

x
j

xr

xr
+=

++
+

++

+−
2222

22

)1(

2

)1(

1
(rewritten)

Equating the real and imaginary parts 

(real part)

(imaginary part)

Thus, we have expressed the real (u) and 

imaginary (v) parts of reflection coefficient  l

in terms of the real (r)  and imaginary (x) 

parts of the normalised load impedance zl . 

Similarly, let us express in what follows next the real (r)  and imaginary (x) 

parts of the normalised load impedance zl in terms of the real (u) and 

imaginary (v) parts of reflection coefficient l .
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11

1 jvu

jxr

jxr +
=

++

−+

)(1

)(1

)1()1(

)1()1(

jvu

jvu

jxrjxr

jxrjxr

+−

++
=

−+−++

−++++

Let us now proceed to express the real (r)  and imaginary (x) parts of the normalised load 

impedance zl in terms of the real (u) and imaginary (v) parts of reflection coefficient  l .

jvu
jxr

jxr
+=

++

−+

1

1
(recalled) 

jvu

jvu
jxr

−−

++
=+

1

1

jvu

jvu

jvu

jvu
jxr

+−

+−


−−

++
=+

1

1

1

1

By algebraic manipulation

By simplification

Multiplying the right hand side by a quantity 

that is equal to unity having the same 

numerator and denominator

22

22

)1(

21

vu

jvvu
jxr

+−

+−−
=+Simplifies to

Equating the real and imaginary parts 

22

22

)1(

1

vu

vu
r

+−

−−
=

22)1(

2

vu

v
x

+−
=

Thus we have expressed the real (r)  

and imaginary (x) parts of the 

normalised load impedance zl in terms 

of the real (u) and imaginary (v) parts 

of reflection coefficient  l .
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2
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)1(

1
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1
(
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=+

+
−

r
v

r

r
u

22

22

)1(

1

vu

vu
r

+−

−−
=

22)1(

2

vu

v
x

+−
=

With a little algebraic manipulation 

(equation representing a constant-r circle on 

the reflection coefficient plane of Smith chart)

(equation representing a constant-x circle on 

the reflection coefficient plane of Smith chart)

(values of u and v varying from point to point 

for a constant value r)

(values of u and v varying from point to point 

for a constant value x)

2

22 1
)

1
()1(

xx
vu =−+−

However, before proceeding further with the above two equations representing 

constant-r and constant-x circles respectively, for the benefit to readers, let us provide 

in what follows next the necessary algebraic steps for the deduction of these equations.    

(rewritten) (rewritten)
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= (recalled)
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r
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)1(

1
2 22

2
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Necessary algebraic steps for deduction of the two equations representing 

constant-r and constant-x circles respectively

By cross multiplication

2

2

2

2
2

1

1

)1(1
2 









+
=+

+
+

+
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r
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r
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+
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






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+
+

+
−+

1

1

)1(1
2)1( 2

2

2
2

Adding the quantity 1/(1+r) to both sides

Dividing by (1 + r)

2

2

2

1

1

1









+
=+









+
−

r
v

r

r
u

Combining the first three terms

(equation representing the constant-r circle)
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(recalled) 
22)1(

2

vu

v
x

+−
= 02])1[( 22 =−+− vvux

02])1[( 222 =−+− vxvux

By cross multiplication and 

rearrangement of terms 

112])1[( 222 =+−+− vxvux

112)1( 2222 =+−+− vxvxux

Multiplying both sides by xAdding the quantity 1 to both sides

By rearrangement of terms

1)1()1( 222 =−+− xvux

2

22 1
)

1
()1(

xx
vu =−+−

Combining the first three terms

Dividing by x2

(equation representing the constant-x circle)

Let us next discuss in what follows the features of constant-r and constant-x circles of Smith 

chart with the help of the equations representing them derived here.   
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Features of constant-r and constant-x circles of Smith chart with the help of the 

equations representing them 

2

22

)1(

1
)

1
(

+
=+

+
−

r
v

r

r
u

(equation representing a constant-r circle on 

the reflection coefficient plane of Smith chart)

(recalled)

Features of constant-r circles of Smith chart:

(constant-r circle)

Examining the equation
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
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
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r

r

r

r
v

r

r
u

r

1

1
,

1

1
;

1

1
,1

1

1
radius

interceptintercept

(constant-r circle)(rewritten)

(complex reflection coefficient l plane of 

Smith chart in the domain of          )1l

(1) The constant- circles are concentric all having the common centre at u = 0, v = 0.

(1)  In general, there are two intercepts of a constant-r circle with u axis and two intercepts with v axis.

(2) The value of r referring to a constant-r circle is near the left intercept on the chart. 

(3) The constant r = 0 circle is the outermost circle of radius = 1. It is also referred to as the constant              

circle. All the points of relevance in the chart are located within this circle. The two intercepts of this 

circle each on u and v axes are                                 .

(4)  All the constant-r circles meet u axis at a common point at the extreme right point of the axis 

corresponding to .

(5) With the increase of the value of r, the radius of the constant-r circle decreases and in the limit r = 

the value of the radius of the circle becomes zero, which means that the constant r =  circle shrinks 

to a point on u axis                . 

1=l

1;1 interceptintercept == vu

)1( intercept =u

1intercept =u

l
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(6) The constant r = 0 and the constant r =  circles pass through the extreme left and right points of 

the real u axis respectively. .

(7) The VSWR of the transmission line is the value of r of the constant-r circle (read on the real u axis) 

passing through the positive intercept of the constant- circle with the real u axis of the chart.

Explanation: 

POOP ==l
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1
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+

−
==
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1

1
VSWR

1

1
=

−

+

l

l (recalled)

r=VSWR

l
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1
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1
1

1
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1
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22interceptintercept

uv

xxxx
vu

x

(8)  The values of the impedance maxima and minima are the values of r of the constant-r circles (read 

on the real u axis) intersecting with the extreme right and left intercepts of the constant- circle 

with the real u axis.

(9)  The extreme left and right points of the          circle (constant r = 0 circle) represent the short circuit 

and open circuits at the load end respectively.

(10)  The VSWR of the points on the chart representing the short and open circuits at the load end is 

infinity, noting that          holds good for each of these terminating loads.

(11)  The constant-r circles with negative r values are of no relevance to the Smith chart since they 

correspond to inadmissible values of both          and         , each falling outside the domain of the 

reflection coefficient.

l

1=l

1=l

interceptu nterceptiv

Features of constant-x circles of Smith chart:

2

22 1
)

1
()1(

xx
vu =−+−

(equation representing the constant-x circle)

(recalled)

Examining the equation

(constant-x circle)
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(complex reflection coefficient l plane of Smith 

chart in the domain of          )



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=

xxxx
vu

x

1
1

1
,

1
1

1
;1

1
radius

22interceptintercept

1l

(constant-r circle)(rewritten)

(1) The values of the constant-x circles are displayed near these circles at the periphery of the outermost 

(r = 0) constant-r circle.

(2) The radius of the constant-x circle increases with the decrease of the value of x and the radius 

becomes infinite for the constant x = 0 circle, which in fact becomes a straight line coinciding with u axis.

(3) All the constant-x circles meet the real u axis of the chart at a common point which is the extreme 

right point of u axis.                .

(4) The radius of the constant-x circle decreases with the increase of the value of x, shrinking to zero for 

the constant-x =  circle at the extreme right point on the u axis of the chart.                .

(5) The constant-x circles  of relevance to the Smith chart correspond to the admissible values of       

and           falling within the domain of         . This, in fact, allows only the family of ‘arcs’ rather than the 

full circles to be displayed on the chart.

(6) The constant-x circles for the positive and negative x values lie respectively on the positive and 

negative imaginary v regions of the chart which appear as the mirror images of each other across          

u axis  for the same though opposite values of x.

)1( intercept =u

)1( intercept =u

nterceptiu

nterceptiv 1l
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Source: Emeloid Company, Hillside, New Jersey
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 10025

0Z
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=

0.2

5.0

x

r

In an earlier example we had calculated the magnitude of reflection coefficient of a transmission line 

of characteristic resistance 50  as 0.877 and its VSWR as 15.3 when it is terminated in complex 

impedance of 25 + j100  using the expressions                                 and                                   . Let us 

now use Smith chart to find the same quantities of the same line.  
)1/()1(VSWR ll −+=)/()( 00 ZZZZ lll +−=

0.25.050/)10025()/( 0 jjZZz ll +=+== (given)

We locate the point P as the point of intersection 

between the r = 0.5 and x = 0 circles on Smith chart. 

Next, we draw a circle taking the origin (u = 0, v =0) 

as its centre such that it passes through the point P 

intersecting u axis at the point P/.

OP)(PO =We can then read the length                by superposing it on the horizontal scale provided at the 

bottom of commercially available Smith chart. This gives the value of the magnitude of reflection 

coefficient as                       , which agrees with the value calculated earlier from the formula of the 

reflection coefficient in terms of the load impedance and characteristic impedance. The value of 

VSWR can be read as                    (the value of r displayed on the scale of the chart),  being the 

value of r referring to the constant-r circle passing through  P/ (as explained earlier while 

describing the features of constant-r circle). This value of VSWR also agrees to that calculated 

earlier using the formula of the VSWR in terms of the magnitude of the reflection coefficient.  

87.0PO =l

2.15VSWR 
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Location of the load impedance of a transmission line on Smith chart

jxr
R

Z
z l
l +==

0

(load impedance normalised with respect to characteristic resistance expressed in terms of its real 

part r and imaginary part x)

Locate the point of intersection between constant-r and constant-x circles now that the values of 

r and x have been identified.

We can read the values of r on u axis and those of x 

on the periphery of the outermost constant-r circle.

In the accompanying figure, the point P being the 

intersection between constant r = 0.5 and constant x = 

2 circles, can be made to represent the normalised 

load impedance zl = Zl/R0 = 0.5 + j2. Therefore, P can 

be made to represent the load impedance of a line of 

characteristic resistance 50  (typical):

Zl = R0(0.5 + j2) = 50  (0.5 + j2) = 25 + j100 .
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Representation of purely resistive, purely inductive and purely capacitive, short-circuit, open-

circuit, and matched loads:

Load at terminating end Representing point on chart

Purely resistive                                           A (typical)

Purely inductive                                          B (typical)

Purely capacitive C (typical)  

Short circuit                                                PSC

Open circuit POC

matched                                                     O

Explanation:

(i) For purely resistive load, x = 0 and the point A lies on u axis which coincides with x = 0 line (see 

constant-x circle features discussed earlier).

(ii) For purely inductive load, r = 0 and the point B lies on constant r = 0 circle (outermost constant-r

circle) such that constant-x circle referring to a positive value of x passes through B. 
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(iii) For purely capacitive load too, r = 0 and the point C lies

on constant r = 0 circle (outermost constant-r circle) such

that constant-x circle referring to a negative value of x

passes through C.

(iv) For the line terminated in a short circuit, r = 0 and x = 0

and the point PSC lies on the extreme left end point on u

axis.

(v) For the line terminated in an open circuit, r =  and x = 

and the point POC lies on the extreme right end point on u

axis. (We recall the constant-r and constant-x circle

features that the constant r = 0 and the constant r = 

circles pass through the extreme left and right points of

the real u axis respectively; and also that in the limit x =

0 circle becomes a straight line coinciding with u axis

and that constant-x =  circle shrinks to the the extreme

right point on u axis).

(vi) For matched load and the point O is the origin u =

0, v = 0, which is also the centre of constant circles.

0=l

l
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

−−

−+
=

−−

−+
=

Location of the input impedance of a transmission line on Smith chart

)exp()exp(

)exp()exp(
0

lBlA

lBlA
ZZin





−−

−+
= (input impedance) 

(recalled) 

(input impedance normalised with respect 

to characteristic impedance) 

Putting  = j for a lossless line

Dividing the numerator and denominator of the right hand side by

A exp(jl) and remembering B/A = l

)exp( jll = (recalled)
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)2(exp1

)2(exp1
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lj
z

l

l

in




−−

−+
= (rewritten)

)exp(1

)exp(1





j

j
z

l

l

l
−

+
=

(recalled)

(load impedance)(input impedance)

Impedance at the load endImpedance at a distance l from the load end)

Two expressions are identical but for the phase factor exp (−jl).

We had earlier showed how to locate the point P, say, to represent the normalised load

impedance zl.

Let  be the angle of P measured from u axis ( = 0) moving ‘anticlockwise’ around the

constant- circle.

Now, we have to move from P through angle 2l ‘clockwise’ to reach a new point representing

the impedance of the line at a distance l from the load end, which is the same as the input

impedance of a line of length l.

The values of r and x referring to the constant-r and constant-x circles passing through this

new point give the real and imaginary parts of the input impedance zin normalised with

respect to characteristic resistance R0.

We can then obtain the input impedance Zin by multiplying zin by R0.

l

The above method of finding the input impedance of a transmission line using 

Smith chart has been further illustrated in an example to follow.  
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Note on wavelength scale displayed around the periphery of 

the outermost constant-r circle

ll )/4(2  =

pl =

 /2= pll  4)/4(2 ==

 242 == pl

2/1=p

2/ == pl

• One rotation through an angle 2 round the periphery of the outermost 

constant-r circle (constant r = 0 circle) of the chart corresponds to the length of 

the transmission line of half wavelength (/2).  

• The distance in wavelengths is indicated on the periphery of the outermost 

constant-r circle. 

• The  extreme left and right points of the circle on the real u axis of the chart 

respectively refer to 0 and 0.25 times the wavelength on the distance scale of 

the length of the transmission line.
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Let us retake, however now using Smith chart, the problem of finding the input impedance 

of a 3-cm long lossless transmission line of characteristic resistance 50 , which operates 

at 3.2 GHz and is terminated in load impedance Zl = 25-j15 . 

(given)

cm375.9)102.3/()103(/ 910 === fc

3.05.050/)1525(// 00 jjRZZZz lll −=−===
 

0
.3

2
λ

B

A
zL

O

• Locate the point A of intersection between the constant r = 0.5 and constant x = 0.3 circles.      

• Move 0.32 (wavelengths) clockwise towards generator around the constant- circle through the 

point A to reach the point B. Identify the constant-r and constant-x circles passing through the point 

B and note that these circles are assigned the values: r = 2.2 and x = - 0.3 respectively. 

Length of the line in number of wavelengths 32.0375.9/3/ ==l

l

3.02.2)/( 0 jZZz inin −== −=−=−= 15110)50)(3.02.2())(3.02.2( 0 jjZjZin

The value so obtained by Smith chart is very close to that calculated earlier using formulae.













−=

==

=

=

1525Z

Hz 102.3GHz 2.3

cm 3

 50

9

0

j

f

l

Z

l
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Closed-ended resonator

a

b

Z

Y

X

l

A  closed-ended rectangular waveguide resonator (abl), which is a rectangular waveguide 

of broad dimension a and narrow dimension b and whose length is l and which has six 

conducting walls located at x = 0 and x = a; y = 0 and y = b; and z = 0 and z =l. 
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


















+








=

22

b

n

a

m
cc


0tan =l ...),3,2,1( == ppl 

0
2222 =−− cc 

Let us use the theory of transmission line to the rectangular waveguide with both of its ends 

closed by conducting walls to form a closed-ended waveguide resonator.

ljZZin tan0=

(input impedance of the line 

short-circuited at the load end)

0=inZ

(input impedance of the line if its 

input end is short-circuited)

(recalled)

c
l

p

b

n

a

m
r

2/1
222




















+








+








=




02

22

2

2

2
=




















+








−








− c

b

n

a

m
c

l

p
r




(Waveguide cutoff frequency) 

(See Chapter 9)

The length l of the 

waveguide resonates at 

angular frequency r.

(angular resonant frequency of closed-ended rectangular 

waveguide resonator)

(closed-ended resonator)

Dispersion relation for both TE 

and TM modes  

p is the mode number in 

addition to m and n
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=lcot

ljZZin cot0−=

We can similarly use the theory of transmission line to the rectangular waveguide with both of 

its ends open to form an open-ended waveguide resonator.

(input impedance of the line 

open-ended at the load end)

(recalled) =inZ

0tan =l ...),3,2,1( == ppl 

c
l

p

b

n

a

m
r

2/1
222




















+








+








=




(open-ended resonator)

Condition identical with that obtained 

for closed-ended resonator 

(angular resonant frequency of open-ended rectangular 

waveguide resonator)

Following the same steps as taken for closed-ended rectangular waveguide 

resonator

Expression identical to that obtained 

for closed-ended resonator 
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In an illustrative example let us find the resonant frequency of a rectangular cavity which 

has the dimensions 3 cm (broad), 2 cm (narrow) and 5 cm (linear) and which is excited in 

the mode TE101.  

GHz83.5Hz1083.5Hz103.58 98 ===rf

c
la

f r
r

2/1

22

11

2

1

2








+==





Hz103)
5

100
()

3

100
(

2

1 8

2/1

22 







+=rf

m = 1, n = 0, p = 1 (given)

a = 3 cm, b = 2 cm, l = 5 cm (given)

c
l

p

b

n

a

m
r

2/1
222




















+








+








=



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)exp( tj

Fields in a waveguide resonator









−= x

a
zjSHz


 cos)exp(

)(expcos0 ztjx
a

HH zz 


−=

SH z =0

Axial magnetic field in a rectangular waveguide 

excited in TE10 mode (recalled from Chapter 9) 

(representing only the forward wave propagating 

along z)
(recalled)

(symbol for field amplitude Hz0 changed so for the sake of 

convenience)









+−= x

a
zjSzjSH z


 cos)]exp())exp([

Keeping understood the time dependence

(S standing for the field amplitude of the forward wave)

(S/ standing for the field amplitude of the backward wave)

A standing wave is formed in a waveguide resonator due to the combination of forward and 

backward waves caused by reflection from the conducting walls perpendicular to axial z direction.

(forward wave)

Similarly for a backward wave: 







= x

a
zjSH z


 cos)exp(

Combining the contribution of the forward and backward waves:
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





=

=

yy

zn

aEE

aa




2









+−= x

a
zjSzjSHz


 cos)]exp()exp([ (rewritten)

02 =Ean


We can establish a relation between 

S and S/ with the help of 

electromagnetic boundary condition 

at the conducting wall at z = 0

(electromagnetic boundary condition recalled 

(see Chapters 7 and 9) at the interface 

between conducting and dielectric/free-space 

media) 

=na


=2E


Unit vector at the conducting surface 

directed from the conducting wall to 

dielectric/free-space medium

Electric field vector in dielectric/free-

space medium

)0(0 == zaEa yyz



xyz aaa


−=

At the waveguide wall z = 0

)0(0 ==− zEa yx


0

0
=

=zy
E

x

H

k

j
E z
y





−
=

22

0





)0(0 ==



z

x

H z

(relation recalled from 

Chapter 9)

(for all values of x)(for all values of x)

T20: Thank you!
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)]exp()exp([sin zjSzjSx
aax

H z 


+−−=




zx
a

HHz 


sincos0 







=

jSH 20 −=









+−= x

a
zjSzjSHz


 cos)]exp()exp([ (rewritten)

)0(0 ==



z

x

H z









−−= x

a
zjzjSHz


 cos)]exp()[exp(

(recalled)

0=+SS

0=z

(for all values of x)

SS −=

 sincos)exp( jj =









+−= x

a
zjSzjSHz


 cos)]exp()exp([

(trigonometrical relation)

In view of



80

zx
a

H
k

j

a
Ey 






sinsin022

0









−
−=

(rewritten)

x

H

k

j
E z
y





−
=

22

0





zx
aa

H
x

H z 


sinsin0−=


zx
a

HHz 


sincos0 







=

)exp(sinsin0
0 tjzx

a
H
aj

Ey 













−=

222 )/( ak  =−

0,1 == nm

0sin =l

0=
=lzy

E

222

ckk =− 

2/1
22




















+








=

b

n

a

m
kc


(TE10 mode)

a
kc


=

(for all values of x)

Boundary condition at the conducting 

wall at z = l

...),3,2,1( == ppl 
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....),3,2,1( == p
p

l



g /2=

0sin =l ...),3,2,1( == ppl  (rewritten)

The condition exactly agrees to what has been 

derived earlier using transmission line theory

....),3,2,1(
2

== ppl
g

(phase propagation  in 

terms of guide 

wavelength g)

(length of the resonator excited in 

TE10p mode)

....),3,2,1( == p
l

p


zx
a

HHz 


sincos0 







=

z
l

p
x

a
HH z )sin(cos0










=

(TE10p mode) (TE10p mode)

zx
a

H
aj

Ey 





sinsin0
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







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x

a
H
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Ey )sin(sin0
0 





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




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x
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)exp(sinsin
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(TE10p mode)z
l

p
x

a
H
aj

Ey )sin(sin0
0 












−= (rewritten)

Substituting in the following Maxwell’s 

equation recalled from Chapter 9

(TE10p mode)

(TE101-mode field expressions of a 

rectangular waveguide resonator)

Putting, in the field expressions

deduced, p = 1 and invoking time 

dependence: )exp( tj

we get
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Quality factor of a 

waveguide resonator

Energy stored (time-averaged) in electric field:

=


 dEEWE


.

2

1
0 (static electric field energy) 

(recalled from Chapter 8)

 ==
 

 daEaEdEEW yyyyE average-time0average-time0 ).(
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1
).(

2
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Time averaging for 

time-varying fields
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(TE101 mode)
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dxdydzd =
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2

1
sin2 

 −=

2

0

23

0

2

0
4

1
HfblaWE =

An extra factor of 1/2 introduced for time averaging

Making use of relation:

Evaluating the integral

Making use of relations:

f 2=

(TE101 mode)

(average energy stored in electric  field)

(TE101 mode)

a

b

Z

Y

X

l



85

=


 dHHWB


.

2

1
0 (static magnetic field 

energy) (recalled 

from Chapter 8)

Time averaging for time-varying fields

Energy stored (time-averaged) in magnetic field:
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An extra factor of 1/2 introduced for time averaging
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In finding the power dissipated in the conducting walls of a rectangular waveguide resonator, 

we can use the same approach as followed in finding the power dissipated in the conducting 

walls of a rectangular waveguide in Chapter 9. 
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We have obtained immediately above 

(i) the expressions for the magnetic field components and 

(ii) the expressions for the surface current densities in terms of magnetic field components 

both at each of the waveguide resonator walls. 

We can substitute (i) in to (ii).   

(wall surface current 

densities to be used 

later for deriving the 

expressions for power 

lost per unit area at 

resonator walls)

Let us next proceed to 

derive the expressions 

for power loss per unit 

area at resonator walls.
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In order to derive the expressions for power loss or dissipated per unit area at resonator walls, 

let us recall the expression for power loss per unit area at a conducting surface PLA in terms of 

the surface resistance and surface current density deduced in Chapter 8 and already used in 

Chapter 9 with respect to waveguide walls.
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The expression for     can be obtained from that of      already obtained earlier simply by 

replacing the factor exp(jt) with exp−(jt). Hence we obtain 

(expressions to be 

substituted in the 

expressions for power 

loss per unit area at 

the surfaces of the 

waveguide walls)
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(power loss per unit 

area at resonator 

walls)

(recalled)

Next, we are going to use these expressions for power loss per unit area at the surfaces 

of the resonator walls to find the power loss over the entire wall surfaces.  
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(total time-averaged energy stored in 

resonant cavity)

(power losses in all the six walls of a 

rectangular waveguide resonator 

summed up) 

Let us see how these two expressions 

derived for a rectangular waveguide 

resonator excited in TE101 mode can be 

used to obtain an expression for the 

quality factor Q of the resonator defined 

as follows.

energy lost per cycle,  that 

is, in the wave time period 

T = 2/

W = time-averaged 

energy stored



2
=T
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(quality factor of a rectangular waveguide resonator)



99

ext ,ohmic ,loaded, LLL PPP +=

2/1

01








==






r

S

f
R

)(2)(

)(2

4 3322

2/322

0

lablaal

lab

R
Q

S +++

+
=



(TE101 mode)

c
la

f r
r

2/1

22

11

2

1

2








+==





(both recalled from 

Chapter 6 for a 

good conductor at 

relatively high 

frequencies: f = fr )

(rewritten) (TE101 mode) (recalled)

The quality factor of a waveguide resonator depends on the dimensions of the 

resonator and on the conductivity of the material used in making it.




0

1

f
=

Loaded quality factor

In an actual application, some part of energy stored in a cavity is coupled out from the cavity to an external 

load and the cavity thereby becomes loaded. For such a loaded cavity, the power lost from the loaded 

cavity PL,loaded consists of 

(i) the ohmic power loss PL,ohmic due the finite conductivity of the material making the cavity and

(ii) the power PL,loaded that couples out from the cavity to the load.   
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+=

(quality factors: unloaded

Qunloaded, external Qext and 

loaded Qloaded related to 

ohmic power loss PL,ohmic, 

power coupled out to the 

external load PL,ext and 

total power loss PL,loaded of 

the loaded cavity, 

respectively 

(relation between the loaded, unloaded 

and external quality factors)  

Frequency response of equivalent impedance of the resonator 

The waveguide resonator may be represented by a resonant circuit comprising an inductor of inductance 

L having reactance jL, a capacitor of capacitance C having reactance 1/(jC) , and a resistor of 

resistance R, all in parallel. 

In what follows next, let us find the frequency response of the impedance Zeq of the L, C, R parallel 

resonant circuit equivalent to the waveguide resonator and hence relate its quality factor to the resonant 

frequency  and the bandwidth  of the resonator.  

2

2

1
CVW = (total energy W stored in the circuit, taken here as the energy in the capacitor which is 

transferred back and forth between the inductor and the capacitor during each cycle)
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(power loss in the resistor of the 

parallel equivalent circuit) CRPW L=
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(recalled)

(resonant angular 

frequency of the circuit) 

An expression that is going to be put in the expression for the 

impedance Zeq of the equivalent L, C, R parallel resonant circuit   

After a little algebra

rQ
L

R
= L

C
R
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At resonance  = r, Zeq = R and we can normalize 

Zeq with respect to R that is its value at resonance. 
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Normalized 

impedance 

magnitude and its 

square

Impedance magnitude and voltage across the circuit

• maximum at resonance

• decreases both below and above resonance. 

Circuit power is proportional to the square of voltage

across the circuit 

Voltage across the circuit is proportional to impedance

Circuit power is proportional 

to the square of impedance
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We expect two solutions 1 and 2 of around the resonant r.

 += r1

 −= r2
 +== r1
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bandwidthfrequency 

rfQ =

Interpreting 2 as the angular frequency bandwidth

In terms of circular frequency or simply frequency

Let us take an illustrative example of finding the dimension of a cubical cavity made of 

copper ( = 5.8  108 mho/m) excited in the TE101 mode so that it resonates at 15 GHz. 

Calculate also its quality factor and bandwidth.

m = 1, n = 0, p = 1 and a = b = l (given)
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a = b = l (given)

Simplifies to

(see Chapter 6 for the expression for Rs used)
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(given)
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Summarising Notes
 Waveguide resonator at a defined resonant frequency can be made out of an 

appropriately chosen length of a waveguide with its both ends either closed by a 

conductor or kept open.

 Transmission line theory is an easy approach of treating a waveguide resonator. 

 Basic concepts of transmission line theory have been developed such as 

 distributed transmission line parameters; 

 telegrapher’s equation;

 condition for distortionless transmission; 

 input impedance of the line terminated in a load impedance;

 characteristic impedance of the line; 

 voltage standing-wave ratio (VSWR) of the line; 

 Impedance matching such as in Radome for the protection of an antenna   

and branch-type radar duplexer of a radar system; and

 Smith chart: theory and application to transmission line problems to make  

them simpler. 
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 Resonator length has been found by transmission line theory as an integral 

multiple of half the guide wavelength for both closed-ended and open-ended 

resonators. 

 Resonant frequency of the waveguide resonator can be found with the help of 

transmission line theory using the dispersion relation of the waveguide. 

 Field theory can be applied to treat a waveguide resonator as an alternative to 

transmission line theory.  

 Field solutions and electromagnetic boundary conditions typically for a 

rectangular waveguide closed-ended resonator has yielded

(i) the same resonator length as predicted by the transmission line theory and

(ii)  an additional mode number p of the waveguide resonator, to be read with 

reference to TE10-mode excitation of the waveguide as TE10p mode of the 

resonator (which may be generalised as TEmnp mode of the resonator with 

reference to TEmn-mode excitation of the waveguide).  

 Field solution and relevant electromagnetic boundary conditions can be used to 

obtain

(i) the expression for the time-averaged energy stored in electric and 

magnetic fields and

(ii) the expression for the power loss in resonator walls. 
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 Expression for the quality factor of a resonator in the TE101 mode at the 

resonant frequency, in terms of the resonator dimensions and the surface 

resistance of the conducting material making the resonator, has been derived 

with the help of the expressions for the time-averaged energy stored and 

power loss in the resonator. 

 Relation between the unloaded quality factor, external quality factor and 

loaded quality factor of a cavity has been obtained keeping in view some part 

of energy stored in a cavity being coupled out from it to an external load in 

practice.  

 Quality factor of a cavity resonator may also be expressed in terms of the 

resonant frequency and bandwidth of the frequency response of half the value 

of square of the ratio of the magnitude of the equivalent impedance of the 

resonant circuit comprising an inductor, capacitor and resistor in parallel. 

Readers are encouraged to go through Chapter 10 

of the book for more topics and more worked-out 

examples and review questions. 


